saakshigupta's picture
Update app.py
fa29b79 verified
raw
history blame
8.62 kB
import streamlit as st
import torch
from PIL import Image
import os
import gc
# Page config
st.set_page_config(
page_title="Deepfake Image Analyzer",
page_icon="πŸ”",
layout="wide"
)
# App title and description
st.title("Deepfake Image Analyzer")
st.markdown("Upload an image to analyze it for possible deepfake manipulation")
# Function to free up memory
def free_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Helper function to check CUDA
def init_device():
"""Set the appropriate device and return it"""
if torch.cuda.is_available():
st.sidebar.success("βœ“ GPU available: Using CUDA")
return "cuda"
else:
st.sidebar.warning("⚠️ No GPU detected: Using CPU (analysis will be slow)")
return "cpu"
# Set device
device = init_device()
@st.cache_resource
def load_model():
"""Load model using Unsloth, similar to your notebook code"""
try:
# Import libraries here to ensure they're loaded when needed
from peft import PeftModel
from unsloth import FastVisionModel
st.info("Loading base model and tokenizer using Unsloth...")
# Use the same model ID and loading approach that worked in your notebook
base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
model, tokenizer = FastVisionModel.from_pretrained(
base_model_id,
load_in_4bit=True,
torch_dtype=torch.float16,
)
# Set to inference mode
FastVisionModel.for_inference(model)
# Load the fine-tuned adapter
st.info("Loading adapter...")
adapter_id = "saakshigupta/deepfake-explainer-1"
model = PeftModel.from_pretrained(model, adapter_id)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.exception(e)
return None, None
# Function to fix cross-attention masks
def fix_processor_outputs(inputs):
"""Fix cross-attention mask dimensions if needed"""
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
visual_features = 6404 # The exact dimension used in training
new_mask = torch.ones(
(batch_size, seq_len, visual_features, num_tiles),
device=inputs['cross_attention_mask'].device
)
inputs['cross_attention_mask'] = new_mask
return True, inputs
return False, inputs
# Create sidebar with options
with st.sidebar:
st.header("Options")
temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1,
help="Higher values make output more random, lower values more deterministic")
max_length = st.slider("Maximum response length", min_value=100, max_value=1000, value=500, step=50)
custom_prompt = st.text_area(
"Custom instruction (optional)",
value="Analyze this image and determine if it's a deepfake. Provide both technical and non-technical explanations.",
height=100
)
st.markdown("### About")
st.markdown("""
This app uses a fine-tuned Llama 3.2 Vision model to detect and explain deepfakes.
The analyzer looks for:
- Inconsistencies in facial features
- Unusual lighting or shadows
- Unnatural blur patterns
- Artifacts around edges
- Texture inconsistencies
Model by [saakshigupta](https://huggingface.co/saakshigupta/deepfake-explainer-1)
""")
# Load model button
if st.button("Load Model"):
with st.spinner("Loading model... this may take a minute."):
try:
model, tokenizer = load_model()
if model is not None and tokenizer is not None:
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
st.success("Model loaded successfully!")
else:
st.error("Failed to load model.")
except Exception as e:
st.error(f"Error during model loading: {str(e)}")
st.exception(e)
# Main content area - file uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Check if model is loaded
model_loaded = 'model' in st.session_state and st.session_state['model'] is not None
if uploaded_file is not None:
# Display the image
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption="Uploaded Image", use_column_width=True)
# Analyze button (only enabled if model is loaded)
if st.button("Analyze Image", disabled=not model_loaded):
if not model_loaded:
st.warning("Please load the model first by clicking the 'Load Model' button.")
else:
with st.spinner("Analyzing the image... This may take 15-30 seconds"):
try:
# Get components from session state
model = st.session_state['model']
tokenizer = st.session_state['tokenizer']
# Format the message for Unsloth - same as your notebook
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": custom_prompt}
]}
]
# Apply chat template
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
# Process with image
inputs = tokenizer(
image,
input_text,
add_special_tokens=False,
return_tensors="pt",
).to(model.device)
# Apply the cross-attention fix
fixed, inputs = fix_processor_outputs(inputs)
if fixed:
st.info("Fixed cross-attention mask dimensions")
# Generate analysis
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
top_p=0.9
)
# Decode the output
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Extract the model's response
if "assistant" in response:
result = response.split("assistant")[-1].strip()
else:
result = response
# Display result in a nice format
st.success("Analysis complete!")
# Show technical and non-technical explanations separately if they exist
if "Technical Explanation:" in result and "Non-Technical Explanation:" in result:
technical, non_technical = result.split("Non-Technical Explanation:")
technical = technical.replace("Technical Explanation:", "").strip()
col1, col2 = st.columns(2)
with col1:
st.subheader("Technical Analysis")
st.write(technical)
with col2:
st.subheader("Simple Explanation")
st.write(non_technical)
else:
st.subheader("Analysis Result")
st.write(result)
# Free memory after analysis
free_memory()
except Exception as e:
st.error(f"Error analyzing image: {str(e)}")
st.exception(e)
elif not model_loaded:
st.warning("Please load the model first by clicking the 'Load Model' button at the top of the page.")
else:
st.info("Please upload an image to begin analysis")
# Add footer
st.markdown("---")
st.markdown("Deepfake Image Analyzer")