Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ warnings.filterwarnings("ignore", category=UserWarning)
|
|
20 |
|
21 |
# App title and description
|
22 |
st.set_page_config(
|
23 |
-
page_title="Deepfake
|
24 |
layout="wide",
|
25 |
page_icon="π"
|
26 |
)
|
@@ -42,9 +42,9 @@ def check_gpu():
|
|
42 |
# Sidebar components
|
43 |
st.sidebar.title("Options")
|
44 |
|
45 |
-
# Fixed values
|
46 |
-
temperature = 0.7
|
47 |
-
max_tokens = 500
|
48 |
|
49 |
# Custom instruction text area in sidebar
|
50 |
custom_instruction = st.sidebar.text_area(
|
@@ -542,11 +542,7 @@ def load_llm_model():
|
|
542 |
return None, None
|
543 |
|
544 |
# Analyze image function
|
545 |
-
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, custom_instruction=""):
|
546 |
-
# Use fixed values for temperature and max_tokens
|
547 |
-
temperature = 0.7 # Fixed temperature value
|
548 |
-
max_tokens = 500 # Fixed max tokens value
|
549 |
-
|
550 |
# Create a prompt that includes GradCAM information
|
551 |
if custom_instruction.strip():
|
552 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
@@ -761,4 +757,150 @@ def main():
|
|
761 |
st.session_state.current_pred_label = pred_label
|
762 |
st.session_state.current_confidence = confidence
|
763 |
|
764 |
-
st.success("β
Initial detection and GradCAM visualization complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# App title and description
|
22 |
st.set_page_config(
|
23 |
+
page_title="Deepfake Analyzer",
|
24 |
layout="wide",
|
25 |
page_icon="π"
|
26 |
)
|
|
|
42 |
# Sidebar components
|
43 |
st.sidebar.title("Options")
|
44 |
|
45 |
+
# Fixed values for temperature and max tokens
|
46 |
+
temperature = 0.7
|
47 |
+
max_tokens = 500
|
48 |
|
49 |
# Custom instruction text area in sidebar
|
50 |
custom_instruction = st.sidebar.text_area(
|
|
|
542 |
return None, None
|
543 |
|
544 |
# Analyze image function
|
545 |
+
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
|
|
|
|
|
|
|
|
546 |
# Create a prompt that includes GradCAM information
|
547 |
if custom_instruction.strip():
|
548 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
|
|
757 |
st.session_state.current_pred_label = pred_label
|
758 |
st.session_state.current_confidence = confidence
|
759 |
|
760 |
+
st.success("β
Initial detection and GradCAM visualization complete!")
|
761 |
+
else:
|
762 |
+
st.warning("β οΈ Please load the CLIP model first to perform initial detection.")
|
763 |
+
except Exception as e:
|
764 |
+
st.error(f"Error processing image: {str(e)}")
|
765 |
+
import traceback
|
766 |
+
st.error(traceback.format_exc()) # This will show the full error traceback
|
767 |
+
|
768 |
+
# Image Analysis Summary section - AFTER Stage 2
|
769 |
+
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
770 |
+
with st.expander("Image Analysis Summary", expanded=True):
|
771 |
+
st.subheader("Generated Descriptions and Analysis")
|
772 |
+
|
773 |
+
# Display image, captions, and results in organized layout with proper formatting
|
774 |
+
col1, col2 = st.columns([1, 2])
|
775 |
+
|
776 |
+
with col1:
|
777 |
+
# Display original image and overlay side by side with controlled size
|
778 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
779 |
+
if hasattr(st.session_state, 'current_overlay'):
|
780 |
+
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
781 |
+
|
782 |
+
with col2:
|
783 |
+
# Detection result
|
784 |
+
if hasattr(st.session_state, 'current_pred_label'):
|
785 |
+
st.markdown("### Detection Result")
|
786 |
+
st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
|
787 |
+
st.markdown("---")
|
788 |
+
|
789 |
+
# Image description
|
790 |
+
if hasattr(st.session_state, 'image_caption'):
|
791 |
+
st.markdown("### Image Description")
|
792 |
+
st.markdown(st.session_state.image_caption)
|
793 |
+
st.markdown("---")
|
794 |
+
|
795 |
+
# GradCAM analysis
|
796 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
797 |
+
st.markdown("### GradCAM Analysis")
|
798 |
+
st.markdown(st.session_state.gradcam_caption)
|
799 |
+
|
800 |
+
# LLM Analysis section - AFTER Image Analysis Summary
|
801 |
+
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
802 |
+
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
803 |
+
st.subheader("Detailed Deepfake Analysis")
|
804 |
+
|
805 |
+
# Display chat history
|
806 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
807 |
+
st.markdown(f"**Question {i+1}:** {question}")
|
808 |
+
st.markdown(f"**Answer:** {answer}")
|
809 |
+
st.markdown("---")
|
810 |
+
|
811 |
+
# Include both captions in the prompt if available
|
812 |
+
caption_text = ""
|
813 |
+
if hasattr(st.session_state, 'image_caption'):
|
814 |
+
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
815 |
+
|
816 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
817 |
+
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
818 |
+
|
819 |
+
# Default question with option to customize
|
820 |
+
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
821 |
+
|
822 |
+
# User input for new question
|
823 |
+
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
824 |
+
|
825 |
+
# Analyze button and Clear Chat button in the same row
|
826 |
+
col1, col2 = st.columns([3, 1])
|
827 |
+
with col1:
|
828 |
+
analyze_button = st.button("π Send Question", type="primary")
|
829 |
+
with col2:
|
830 |
+
clear_button = st.button("ποΈ Clear Chat History")
|
831 |
+
|
832 |
+
if clear_button:
|
833 |
+
st.session_state.chat_history = []
|
834 |
+
st.experimental_rerun()
|
835 |
+
|
836 |
+
if analyze_button and new_question:
|
837 |
+
try:
|
838 |
+
# Add caption info if it's the first question
|
839 |
+
if not st.session_state.chat_history:
|
840 |
+
full_question = new_question + caption_text
|
841 |
+
else:
|
842 |
+
full_question = new_question
|
843 |
+
|
844 |
+
result = analyze_image_with_llm(
|
845 |
+
st.session_state.current_image,
|
846 |
+
st.session_state.current_overlay,
|
847 |
+
st.session_state.current_face_box,
|
848 |
+
st.session_state.current_pred_label,
|
849 |
+
st.session_state.current_confidence,
|
850 |
+
full_question,
|
851 |
+
st.session_state.llm_model,
|
852 |
+
st.session_state.tokenizer,
|
853 |
+
temperature=temperature,
|
854 |
+
max_tokens=max_tokens,
|
855 |
+
custom_instruction=custom_instruction
|
856 |
+
)
|
857 |
+
|
858 |
+
# Add to chat history
|
859 |
+
st.session_state.chat_history.append((new_question, result))
|
860 |
+
|
861 |
+
# Display the latest result too
|
862 |
+
st.success("β
Analysis complete!")
|
863 |
+
|
864 |
+
# Check if the result contains both technical and non-technical explanations
|
865 |
+
if "Technical" in result and "Non-Technical" in result:
|
866 |
+
try:
|
867 |
+
# Split the result into technical and non-technical sections
|
868 |
+
parts = result.split("Non-Technical")
|
869 |
+
technical = parts[0]
|
870 |
+
non_technical = "Non-Technical" + parts[1]
|
871 |
+
|
872 |
+
# Display in two columns
|
873 |
+
tech_col, simple_col = st.columns(2)
|
874 |
+
with tech_col:
|
875 |
+
st.subheader("Technical Analysis")
|
876 |
+
st.markdown(technical)
|
877 |
+
|
878 |
+
with simple_col:
|
879 |
+
st.subheader("Simple Explanation")
|
880 |
+
st.markdown(non_technical)
|
881 |
+
except Exception as e:
|
882 |
+
# Fallback if splitting fails
|
883 |
+
st.subheader("Analysis Result")
|
884 |
+
st.markdown(result)
|
885 |
+
else:
|
886 |
+
# Just display the whole result
|
887 |
+
st.subheader("Analysis Result")
|
888 |
+
st.markdown(result)
|
889 |
+
|
890 |
+
# Rerun to update the chat history display
|
891 |
+
st.experimental_rerun()
|
892 |
+
|
893 |
+
except Exception as e:
|
894 |
+
st.error(f"Error during LLM analysis: {str(e)}")
|
895 |
+
|
896 |
+
elif not hasattr(st.session_state, 'current_image'):
|
897 |
+
st.warning("β οΈ Please upload an image and complete the initial detection first.")
|
898 |
+
else:
|
899 |
+
st.warning("β οΈ Please load the Vision LLM to perform detailed analysis.")
|
900 |
+
|
901 |
+
# Footer
|
902 |
+
st.markdown("---")
|
903 |
+
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|
904 |
+
|
905 |
+
if __name__ == "__main__":
|
906 |
+
main()
|