Update app.py
Browse files
app.py
CHANGED
@@ -69,6 +69,9 @@ custom_instruction = st.sidebar.text_area(
|
|
69 |
help="Add specific instructions for the LLM analysis"
|
70 |
)
|
71 |
|
|
|
|
|
|
|
72 |
# About section in sidebar
|
73 |
st.sidebar.markdown("---")
|
74 |
st.sidebar.subheader("About")
|
@@ -88,337 +91,12 @@ The system looks for:
|
|
88 |
- Blending problems
|
89 |
""")
|
90 |
|
91 |
-
# -----
|
92 |
-
|
93 |
-
class ImageDataset(torch.utils.data.Dataset):
|
94 |
-
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
|
95 |
-
self.image = image
|
96 |
-
self.transform = transform
|
97 |
-
self.face_only = face_only
|
98 |
-
self.dataset_name = dataset_name
|
99 |
-
# Load face detector
|
100 |
-
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
101 |
-
|
102 |
-
def __len__(self):
|
103 |
-
return 1 # Only one image
|
104 |
-
|
105 |
-
def detect_face(self, image_np):
|
106 |
-
"""Detect face in image and return the face region"""
|
107 |
-
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
108 |
-
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
|
109 |
-
|
110 |
-
# If no face is detected, use the whole image
|
111 |
-
if len(faces) == 0:
|
112 |
-
st.info("No face detected, using whole image for analysis")
|
113 |
-
h, w = image_np.shape[:2]
|
114 |
-
return (0, 0, w, h), image_np
|
115 |
-
|
116 |
-
# Get the largest face
|
117 |
-
if len(faces) > 1:
|
118 |
-
# Choose the largest face by area
|
119 |
-
areas = [w*h for (x, y, w, h) in faces]
|
120 |
-
largest_idx = np.argmax(areas)
|
121 |
-
x, y, w, h = faces[largest_idx]
|
122 |
-
else:
|
123 |
-
x, y, w, h = faces[0]
|
124 |
-
|
125 |
-
# Add padding around the face (5% on each side)
|
126 |
-
padding_x = int(w * 0.05)
|
127 |
-
padding_y = int(h * 0.05)
|
128 |
-
|
129 |
-
# Ensure padding doesn't go outside image bounds
|
130 |
-
x1 = max(0, x - padding_x)
|
131 |
-
y1 = max(0, y - padding_y)
|
132 |
-
x2 = min(image_np.shape[1], x + w + padding_x)
|
133 |
-
y2 = min(image_np.shape[0], y + h + padding_y)
|
134 |
-
|
135 |
-
# Extract the face region
|
136 |
-
face_img = image_np[y1:y2, x1:x2]
|
137 |
-
|
138 |
-
return (x1, y1, x2-x1, y2-y1), face_img
|
139 |
-
|
140 |
-
def __getitem__(self, idx):
|
141 |
-
image_np = np.array(self.image)
|
142 |
-
label = 0 # Default label; will be overridden by prediction
|
143 |
-
|
144 |
-
# Store original image for visualization
|
145 |
-
original_image = self.image.copy()
|
146 |
-
|
147 |
-
# Detect face if required
|
148 |
-
if self.face_only:
|
149 |
-
face_box, face_img_np = self.detect_face(image_np)
|
150 |
-
face_img = Image.fromarray(face_img_np)
|
151 |
-
|
152 |
-
# Apply transform to face image
|
153 |
-
if self.transform:
|
154 |
-
face_tensor = self.transform(face_img)
|
155 |
-
else:
|
156 |
-
face_tensor = transforms.ToTensor()(face_img)
|
157 |
-
|
158 |
-
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
|
159 |
-
else:
|
160 |
-
# Process the whole image
|
161 |
-
if self.transform:
|
162 |
-
image_tensor = self.transform(self.image)
|
163 |
-
else:
|
164 |
-
image_tensor = transforms.ToTensor()(self.image)
|
165 |
-
|
166 |
-
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
|
167 |
-
|
168 |
-
class GradCAM:
|
169 |
-
def __init__(self, model, target_layer):
|
170 |
-
self.model = model
|
171 |
-
self.target_layer = target_layer
|
172 |
-
self.gradients = None
|
173 |
-
self.activations = None
|
174 |
-
self._register_hooks()
|
175 |
-
|
176 |
-
def _register_hooks(self):
|
177 |
-
def forward_hook(module, input, output):
|
178 |
-
if isinstance(output, tuple):
|
179 |
-
self.activations = output[0]
|
180 |
-
else:
|
181 |
-
self.activations = output
|
182 |
-
|
183 |
-
def backward_hook(module, grad_in, grad_out):
|
184 |
-
if isinstance(grad_out, tuple):
|
185 |
-
self.gradients = grad_out[0]
|
186 |
-
else:
|
187 |
-
self.gradients = grad_out
|
188 |
-
|
189 |
-
layer = dict([*self.model.named_modules()])[self.target_layer]
|
190 |
-
layer.register_forward_hook(forward_hook)
|
191 |
-
layer.register_backward_hook(backward_hook)
|
192 |
-
|
193 |
-
def generate(self, input_tensor, class_idx):
|
194 |
-
self.model.zero_grad()
|
195 |
-
|
196 |
-
try:
|
197 |
-
# Use only the vision part of the model for gradient calculation
|
198 |
-
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
|
199 |
-
|
200 |
-
# Get the pooler output
|
201 |
-
features = vision_outputs.pooler_output
|
202 |
-
|
203 |
-
# Create a dummy gradient for the feature based on the class idx
|
204 |
-
one_hot = torch.zeros_like(features)
|
205 |
-
one_hot[0, class_idx] = 1
|
206 |
-
|
207 |
-
# Manually backpropagate
|
208 |
-
features.backward(gradient=one_hot)
|
209 |
-
|
210 |
-
# Check for None values
|
211 |
-
if self.gradients is None or self.activations is None:
|
212 |
-
st.warning("Warning: Gradients or activations are None. Using fallback CAM.")
|
213 |
-
return np.ones((14, 14), dtype=np.float32) * 0.5
|
214 |
-
|
215 |
-
# Process gradients and activations for transformer-based model
|
216 |
-
gradients = self.gradients.cpu().detach().numpy()
|
217 |
-
activations = self.activations.cpu().detach().numpy()
|
218 |
-
|
219 |
-
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
|
220 |
-
seq_len = activations.shape[1]
|
221 |
-
|
222 |
-
# CLIP ViT typically has 196 patch tokens (14Γ14) + 1 class token = 197
|
223 |
-
if seq_len >= 197:
|
224 |
-
# Skip the class token (first token) and reshape the patch tokens into a square
|
225 |
-
patch_tokens = activations[0, 1:197, :] # Remove the class token
|
226 |
-
# Take the mean across the hidden dimension
|
227 |
-
token_importance = np.mean(np.abs(patch_tokens), axis=1)
|
228 |
-
# Reshape to the expected grid size (14Γ14 for CLIP ViT)
|
229 |
-
cam = token_importance.reshape(14, 14)
|
230 |
-
else:
|
231 |
-
# Try to find factors close to a square
|
232 |
-
side_len = int(np.sqrt(seq_len))
|
233 |
-
# Use the mean across features as importance
|
234 |
-
token_importance = np.mean(np.abs(activations[0]), axis=1)
|
235 |
-
# Create as square-like shape as possible
|
236 |
-
cam = np.zeros((side_len, side_len))
|
237 |
-
# Fill the cam with available values
|
238 |
-
flat_cam = cam.flatten()
|
239 |
-
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
|
240 |
-
cam = flat_cam.reshape(side_len, side_len)
|
241 |
-
else:
|
242 |
-
# Fallback
|
243 |
-
st.info("Using fallback CAM shape (14x14)")
|
244 |
-
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
|
245 |
-
|
246 |
-
# Ensure we have valid values
|
247 |
-
cam = np.maximum(cam, 0)
|
248 |
-
if np.max(cam) > 0:
|
249 |
-
cam = cam / np.max(cam)
|
250 |
-
|
251 |
-
return cam
|
252 |
-
|
253 |
-
except Exception as e:
|
254 |
-
st.error(f"Error in GradCAM.generate: {str(e)}")
|
255 |
-
return np.ones((14, 14), dtype=np.float32) * 0.5
|
256 |
-
|
257 |
-
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
|
258 |
-
"""Overlay the CAM on the image"""
|
259 |
-
if face_box is not None:
|
260 |
-
x, y, w, h = face_box
|
261 |
-
# Create a mask for the entire image (all zeros initially)
|
262 |
-
img_np = np.array(image)
|
263 |
-
full_h, full_w = img_np.shape[:2]
|
264 |
-
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
|
265 |
-
|
266 |
-
# Resize CAM to match face region
|
267 |
-
face_cam = cv2.resize(cam, (w, h))
|
268 |
-
|
269 |
-
# Copy the face CAM into the full image CAM at the face position
|
270 |
-
full_cam[y:y+h, x:x+w] = face_cam
|
271 |
-
|
272 |
-
# Convert full CAM to image
|
273 |
-
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
|
274 |
-
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
|
275 |
-
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
276 |
-
else:
|
277 |
-
# Resize CAM to match image dimensions
|
278 |
-
img_np = np.array(image)
|
279 |
-
h, w = img_np.shape[:2]
|
280 |
-
cam_resized = cv2.resize(cam, (w, h))
|
281 |
-
|
282 |
-
# Apply colormap
|
283 |
-
cam_colormap = plt.cm.jet(cam_resized)[:, :, :3] # Apply colormap
|
284 |
-
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
285 |
-
|
286 |
-
# Blend the original image with the colormap
|
287 |
-
img_np_float = img_np.astype(float) / 255.0
|
288 |
-
cam_colormap_float = cam_colormap.astype(float) / 255.0
|
289 |
-
|
290 |
-
blended = img_np_float * (1 - alpha) + cam_colormap_float * alpha
|
291 |
-
blended = (blended * 255).astype(np.uint8)
|
292 |
-
|
293 |
-
return Image.fromarray(blended)
|
294 |
-
|
295 |
-
def save_comparison(image, cam, overlay, face_box=None):
|
296 |
-
"""Create a side-by-side comparison of the original, CAM, and overlay"""
|
297 |
-
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
298 |
-
|
299 |
-
# Original Image
|
300 |
-
axes[0].imshow(image)
|
301 |
-
axes[0].set_title("Original")
|
302 |
-
if face_box is not None:
|
303 |
-
x, y, w, h = face_box
|
304 |
-
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
|
305 |
-
axes[0].add_patch(rect)
|
306 |
-
axes[0].axis("off")
|
307 |
-
|
308 |
-
# CAM
|
309 |
-
if face_box is not None:
|
310 |
-
# Create a full image CAM that highlights only the face
|
311 |
-
img_np = np.array(image)
|
312 |
-
h, w = img_np.shape[:2]
|
313 |
-
full_cam = np.zeros((h, w))
|
314 |
-
|
315 |
-
x, y, fw, fh = face_box
|
316 |
-
# Resize CAM to face size
|
317 |
-
face_cam = cv2.resize(cam, (fw, fh))
|
318 |
-
# Place it in the right position
|
319 |
-
full_cam[y:y+fh, x:x+fw] = face_cam
|
320 |
-
axes[1].imshow(full_cam, cmap="jet")
|
321 |
-
else:
|
322 |
-
cam_resized = cv2.resize(cam, (image.width, image.height))
|
323 |
-
axes[1].imshow(cam_resized, cmap="jet")
|
324 |
-
axes[1].set_title("CAM")
|
325 |
-
axes[1].axis("off")
|
326 |
-
|
327 |
-
# Overlay
|
328 |
-
axes[2].imshow(overlay)
|
329 |
-
axes[2].set_title("Overlay")
|
330 |
-
axes[2].axis("off")
|
331 |
-
|
332 |
-
plt.tight_layout()
|
333 |
-
|
334 |
-
# Convert plot to PIL Image for Streamlit display
|
335 |
-
buf = io.BytesIO()
|
336 |
-
plt.savefig(buf, format="png", bbox_inches="tight")
|
337 |
-
plt.close()
|
338 |
-
buf.seek(0)
|
339 |
-
return Image.open(buf)
|
340 |
-
|
341 |
-
# Function to load GradCAM CLIP model
|
342 |
-
@st.cache_resource
|
343 |
-
def load_clip_model():
|
344 |
-
with st.spinner("Loading CLIP model for GradCAM..."):
|
345 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
346 |
-
|
347 |
-
# Apply a simple classification head
|
348 |
-
model.classification_head = nn.Linear(1024, 2)
|
349 |
-
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
|
350 |
-
model.classification_head.bias.data.zero_()
|
351 |
-
|
352 |
-
model.eval()
|
353 |
-
return model
|
354 |
-
|
355 |
-
def get_target_layer_clip(model):
|
356 |
-
"""Get the target layer for GradCAM"""
|
357 |
-
return "vision_model.encoder.layers.23"
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
# Set up transformations
|
362 |
-
transform = transforms.Compose([
|
363 |
-
transforms.Resize((224, 224)),
|
364 |
-
transforms.ToTensor(),
|
365 |
-
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
366 |
-
])
|
367 |
-
|
368 |
-
# Create dataset for the single image
|
369 |
-
dataset = ImageDataset(image, transform=transform, face_only=True)
|
370 |
-
|
371 |
-
# Custom collate function
|
372 |
-
def custom_collate(batch):
|
373 |
-
tensors = [item[0] for item in batch]
|
374 |
-
labels = [item[1] for item in batch]
|
375 |
-
paths = [item[2] for item in batch]
|
376 |
-
images = [item[3] for item in batch]
|
377 |
-
face_boxes = [item[4] for item in batch]
|
378 |
-
dataset_names = [item[5] for item in batch]
|
379 |
-
|
380 |
-
tensors = torch.stack(tensors)
|
381 |
-
labels = torch.tensor(labels)
|
382 |
-
|
383 |
-
return tensors, labels, paths, images, face_boxes, dataset_names
|
384 |
-
|
385 |
-
# Create dataloader
|
386 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=custom_collate)
|
387 |
-
|
388 |
-
# Extract the batch
|
389 |
-
for batch in dataloader:
|
390 |
-
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
|
391 |
-
original_image = original_images[0]
|
392 |
-
face_box = face_boxes[0]
|
393 |
-
|
394 |
-
# Move tensors and model to device
|
395 |
-
input_tensor = input_tensor.to(device)
|
396 |
-
model = model.to(device)
|
397 |
-
|
398 |
-
try:
|
399 |
-
# Create GradCAM extractor
|
400 |
-
target_layer = get_target_layer_clip(model)
|
401 |
-
cam_extractor = GradCAM(model, target_layer)
|
402 |
-
|
403 |
-
# Generate CAM
|
404 |
-
cam = cam_extractor.generate(input_tensor, pred_class)
|
405 |
-
|
406 |
-
# Create visualizations
|
407 |
-
overlay = overlay_cam_on_image(original_image, cam, face_box)
|
408 |
-
comparison = save_comparison(original_image, cam, overlay, face_box)
|
409 |
-
|
410 |
-
# Return results
|
411 |
-
return cam, overlay, comparison, face_box
|
412 |
-
|
413 |
-
except Exception as e:
|
414 |
-
st.error(f"Error processing image with GradCAM: {str(e)}")
|
415 |
-
# Return default values
|
416 |
-
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
|
417 |
-
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
|
418 |
-
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
419 |
-
return default_cam, overlay, comparison, face_box
|
420 |
|
421 |
-
|
422 |
|
423 |
# Function to load BLIP captioning model
|
424 |
@st.cache_resource
|
@@ -432,39 +110,8 @@ def load_blip_model():
|
|
432 |
st.error(f"Error loading BLIP model: {str(e)}")
|
433 |
return None, None
|
434 |
|
435 |
-
#
|
436 |
-
ORIGINAL_IMAGE_PROMPT = """Generate a detailed description of this image with the following structure:
|
437 |
-
Subject: [Describe the person/main subject]
|
438 |
-
Appearance: [Describe clothing, hair, facial features]
|
439 |
-
Pose: [Describe the person's pose and expression]
|
440 |
-
Background: [Describe the environment and setting]
|
441 |
-
Lighting: [Describe lighting conditions and shadows]
|
442 |
-
Colors: [Note dominant colors and color palette]
|
443 |
-
Notable Elements: [Any distinctive objects or visual elements]"""
|
444 |
-
|
445 |
-
GRADCAM_IMAGE_PROMPT = """Describe the GradCAM visualization overlay with the following structure:
|
446 |
-
Main Focus Area: [Identify the primary region highlighted]
|
447 |
-
High Activation Regions: [Describe red/yellow areas and corresponding image features]
|
448 |
-
Medium Activation Regions: [Describe green/cyan areas and corresponding image features]
|
449 |
-
Low Activation Regions: [Describe blue/dark blue areas and corresponding image features]
|
450 |
-
Activation Pattern: [Describe the overall pattern of the heatmap]"""
|
451 |
-
|
452 |
-
# Function to generate image caption
|
453 |
def generate_image_caption(image, processor, model, is_gradcam=False, max_length=75, num_beams=5):
|
454 |
-
"""
|
455 |
-
Generate a caption for the input image using BLIP model
|
456 |
-
|
457 |
-
Args:
|
458 |
-
image (PIL.Image): Input image
|
459 |
-
processor: BLIP processor
|
460 |
-
model: BLIP model
|
461 |
-
is_gradcam (bool): Whether the image is a GradCAM visualization
|
462 |
-
max_length (int): Maximum length of the caption
|
463 |
-
num_beams (int): Number of beams for beam search
|
464 |
-
|
465 |
-
Returns:
|
466 |
-
str: Generated caption
|
467 |
-
"""
|
468 |
try:
|
469 |
# Select the appropriate prompt based on image type
|
470 |
prompt = GRADCAM_IMAGE_PROMPT if is_gradcam else ORIGINAL_IMAGE_PROMPT
|
@@ -493,101 +140,11 @@ def generate_image_caption(image, processor, model, is_gradcam=False, max_length
|
|
493 |
st.error(f"Error generating caption: {str(e)}")
|
494 |
return "Error generating caption"
|
495 |
|
496 |
-
# ----- Fine-tuned Vision LLM -----
|
497 |
-
|
498 |
-
# Function to fix cross-attention masks
|
499 |
-
def fix_cross_attention_mask(inputs):
|
500 |
-
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
501 |
-
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
|
502 |
-
visual_features = 6404 # Critical dimension
|
503 |
-
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
504 |
-
device=inputs['cross_attention_mask'].device)
|
505 |
-
inputs['cross_attention_mask'] = new_mask
|
506 |
-
st.success("Fixed cross-attention mask dimensions")
|
507 |
-
return inputs
|
508 |
-
|
509 |
-
# Load model function
|
510 |
-
@st.cache_resource
|
511 |
-
def load_llm_model():
|
512 |
-
with st.spinner("Loading LLM vision model... This may take a few minutes. Please be patient..."):
|
513 |
-
try:
|
514 |
-
# Check for GPU
|
515 |
-
has_gpu = check_gpu()
|
516 |
-
|
517 |
-
# Load base model and tokenizer using Unsloth
|
518 |
-
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
|
519 |
-
model, tokenizer = FastVisionModel.from_pretrained(
|
520 |
-
base_model_id,
|
521 |
-
load_in_4bit=True,
|
522 |
-
)
|
523 |
-
|
524 |
-
# Load the adapter
|
525 |
-
adapter_id = "saakshigupta/deepfake-explainer-1"
|
526 |
-
model = PeftModel.from_pretrained(model, adapter_id)
|
527 |
-
|
528 |
-
# Set to inference mode
|
529 |
-
FastVisionModel.for_inference(model)
|
530 |
-
|
531 |
-
return model, tokenizer
|
532 |
-
except Exception as e:
|
533 |
-
st.error(f"Error loading model: {str(e)}")
|
534 |
-
return None, None
|
535 |
-
|
536 |
-
# Analyze image function
|
537 |
-
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
538 |
-
# Create a prompt that includes GradCAM information
|
539 |
-
if custom_instruction.strip():
|
540 |
-
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
541 |
-
else:
|
542 |
-
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious."
|
543 |
-
|
544 |
-
# Format the message to include both the original image and the GradCAM visualization
|
545 |
-
messages = [
|
546 |
-
{"role": "user", "content": [
|
547 |
-
{"type": "image", "image": image}, # Original image
|
548 |
-
{"type": "image", "image": gradcam_overlay}, # GradCAM overlay
|
549 |
-
{"type": "text", "text": full_prompt}
|
550 |
-
]}
|
551 |
-
]
|
552 |
-
|
553 |
-
# Apply chat template
|
554 |
-
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
555 |
-
|
556 |
-
# Process with image
|
557 |
-
inputs = tokenizer(
|
558 |
-
[image, gradcam_overlay], # Send both images
|
559 |
-
input_text,
|
560 |
-
add_special_tokens=False,
|
561 |
-
return_tensors="pt",
|
562 |
-
).to(model.device)
|
563 |
-
|
564 |
-
# Fix cross-attention mask if needed
|
565 |
-
inputs = fix_cross_attention_mask(inputs)
|
566 |
-
|
567 |
-
# Generate response
|
568 |
-
with st.spinner("Generating detailed analysis... (this may take 15-30 seconds)"):
|
569 |
-
with torch.no_grad():
|
570 |
-
output_ids = model.generate(
|
571 |
-
**inputs,
|
572 |
-
max_new_tokens=max_tokens,
|
573 |
-
use_cache=True,
|
574 |
-
temperature=temperature,
|
575 |
-
top_p=0.9
|
576 |
-
)
|
577 |
-
|
578 |
-
# Decode the output
|
579 |
-
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
580 |
-
|
581 |
-
# Try to extract just the model's response (after the prompt)
|
582 |
-
if full_prompt in response:
|
583 |
-
result = response.split(full_prompt)[-1].strip()
|
584 |
-
else:
|
585 |
-
result = response
|
586 |
-
|
587 |
-
return result
|
588 |
-
|
589 |
# Main app
|
590 |
def main():
|
|
|
|
|
|
|
591 |
# Create placeholders for model state
|
592 |
if 'clip_model_loaded' not in st.session_state:
|
593 |
st.session_state.clip_model_loaded = False
|
@@ -605,148 +162,56 @@ def main():
|
|
605 |
|
606 |
# Create expanders for each stage
|
607 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
|
|
|
|
608 |
# Button for loading models
|
609 |
clip_col, llm_col, blip_col = st.columns(3)
|
610 |
|
611 |
with clip_col:
|
612 |
if not st.session_state.clip_model_loaded:
|
613 |
if st.button("π₯ Load CLIP Model for Detection", type="primary"):
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
st.session_state.clip_model = model
|
618 |
-
st.session_state.clip_model_loaded = True
|
619 |
-
st.success("β
CLIP model loaded successfully!")
|
620 |
-
else:
|
621 |
-
st.error("β Failed to load CLIP model.")
|
622 |
else:
|
623 |
st.success("β
CLIP model loaded and ready!")
|
624 |
|
625 |
with llm_col:
|
626 |
if not st.session_state.llm_model_loaded:
|
627 |
if st.button("π₯ Load Vision LLM for Analysis", type="primary"):
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
st.session_state.llm_model = model
|
632 |
-
st.session_state.tokenizer = tokenizer
|
633 |
-
st.session_state.llm_model_loaded = True
|
634 |
-
st.success("β
Vision LLM loaded successfully!")
|
635 |
-
else:
|
636 |
-
st.error("β Failed to load Vision LLM.")
|
637 |
else:
|
638 |
st.success("β
Vision LLM loaded and ready!")
|
639 |
|
640 |
with blip_col:
|
641 |
if not st.session_state.blip_model_loaded:
|
642 |
if st.button("π₯ Load BLIP for Captioning", type="primary"):
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
st.session_state.blip_processor = processor
|
647 |
-
st.session_state.blip_model = model
|
648 |
-
st.session_state.blip_model_loaded = True
|
649 |
-
st.success("β
BLIP captioning model loaded successfully!")
|
650 |
-
else:
|
651 |
-
st.error("β Failed to load BLIP model.")
|
652 |
else:
|
653 |
st.success("β
BLIP captioning model loaded and ready!")
|
654 |
|
655 |
# Image upload section
|
656 |
-
with st.expander("Stage 2: Image Upload
|
657 |
st.subheader("Upload an Image")
|
658 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
659 |
|
660 |
if uploaded_file is not None:
|
|
|
661 |
# Display the uploaded image
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
st.success(f"π Image Description Generated")
|
676 |
-
|
677 |
-
# Format the caption nicely
|
678 |
-
st.markdown("### Image Description:")
|
679 |
-
st.markdown(caption)
|
680 |
-
|
681 |
-
# Detect with CLIP model if loaded
|
682 |
-
if st.session_state.clip_model_loaded:
|
683 |
-
with st.spinner("Analyzing image with CLIP model..."):
|
684 |
-
# Preprocess image for CLIP
|
685 |
-
transform = transforms.Compose([
|
686 |
-
transforms.Resize((224, 224)),
|
687 |
-
transforms.ToTensor(),
|
688 |
-
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
689 |
-
])
|
690 |
-
|
691 |
-
# Create a simple dataset for the image
|
692 |
-
dataset = ImageDataset(image, transform=transform, face_only=True)
|
693 |
-
tensor, _, _, _, face_box, _ = dataset[0]
|
694 |
-
tensor = tensor.unsqueeze(0)
|
695 |
-
|
696 |
-
# Get device
|
697 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
698 |
-
|
699 |
-
# Move model and tensor to device
|
700 |
-
model = st.session_state.clip_model.to(device)
|
701 |
-
tensor = tensor.to(device)
|
702 |
-
|
703 |
-
# Forward pass
|
704 |
-
with torch.no_grad():
|
705 |
-
outputs = model.vision_model(pixel_values=tensor).pooler_output
|
706 |
-
logits = model.classification_head(outputs)
|
707 |
-
probs = torch.softmax(logits, dim=1)[0]
|
708 |
-
pred_class = torch.argmax(probs).item()
|
709 |
-
confidence = probs[pred_class].item()
|
710 |
-
pred_label = "Fake" if pred_class == 1 else "Real"
|
711 |
-
|
712 |
-
# Display results
|
713 |
-
result_col1, result_col2 = st.columns(2)
|
714 |
-
with result_col1:
|
715 |
-
st.metric("Prediction", pred_label)
|
716 |
-
with result_col2:
|
717 |
-
st.metric("Confidence", f"{confidence:.2%}")
|
718 |
-
|
719 |
-
# GradCAM visualization
|
720 |
-
st.subheader("GradCAM Visualization")
|
721 |
-
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
|
722 |
-
image, model, device, pred_class
|
723 |
-
)
|
724 |
-
|
725 |
-
# Display GradCAM results
|
726 |
-
st.image(comparison, caption="Original | CAM | Overlay", use_column_width=True)
|
727 |
-
|
728 |
-
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
729 |
-
if st.session_state.blip_model_loaded:
|
730 |
-
with st.spinner("Analyzing GradCAM visualization..."):
|
731 |
-
gradcam_caption = generate_image_caption(
|
732 |
-
overlay,
|
733 |
-
st.session_state.blip_processor,
|
734 |
-
st.session_state.blip_model,
|
735 |
-
is_gradcam=True,
|
736 |
-
max_length=100 # Longer for detailed analysis
|
737 |
-
)
|
738 |
-
st.session_state.gradcam_caption = gradcam_caption
|
739 |
-
st.success("β
GradCAM analysis complete")
|
740 |
-
|
741 |
-
# Format the GradCAM caption nicely
|
742 |
-
st.markdown("### GradCAM Analysis:")
|
743 |
-
st.markdown(gradcam_caption)
|
744 |
-
|
745 |
-
# Save results in session state for LLM analysis
|
746 |
-
st.session_state.current_image = image
|
747 |
-
st.session_state.current_overlay = overlay
|
748 |
-
st.session_state.current_face_box = detected_face_box
|
749 |
-
st.session_state.current_pred_label = pred_label
|
750 |
-
st.session_state.current_confidence = confidence
|
751 |
-
|
752 |
-
st.success("β
Initial detection and GradCAM visualization complete!")
|
|
|
69 |
help="Add specific instructions for the LLM analysis"
|
70 |
)
|
71 |
|
72 |
+
# Debug section - try adding this to see if it appears
|
73 |
+
st.write("Debug: Initial app setup complete")
|
74 |
+
|
75 |
# About section in sidebar
|
76 |
st.sidebar.markdown("---")
|
77 |
st.sidebar.subheader("About")
|
|
|
91 |
- Blending problems
|
92 |
""")
|
93 |
|
94 |
+
# ----- BLIP Image Captioning -----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# Define custom prompts for original and GradCAM images - simplified to avoid errors
|
97 |
+
ORIGINAL_IMAGE_PROMPT = "Generate a detailed description of this image with the following structure: Subject, Appearance, Pose, Background, Lighting, Colors, Notable Elements"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
GRADCAM_IMAGE_PROMPT = "Describe the GradCAM visualization overlay with the following structure: Main Focus Area, High Activation Regions, Medium Activation Regions, Low Activation Regions, Activation Pattern"
|
100 |
|
101 |
# Function to load BLIP captioning model
|
102 |
@st.cache_resource
|
|
|
110 |
st.error(f"Error loading BLIP model: {str(e)}")
|
111 |
return None, None
|
112 |
|
113 |
+
# Simplified function to generate image caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def generate_image_caption(image, processor, model, is_gradcam=False, max_length=75, num_beams=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
# Select the appropriate prompt based on image type
|
117 |
prompt = GRADCAM_IMAGE_PROMPT if is_gradcam else ORIGINAL_IMAGE_PROMPT
|
|
|
140 |
st.error(f"Error generating caption: {str(e)}")
|
141 |
return "Error generating caption"
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# Main app
|
144 |
def main():
|
145 |
+
# Debug - add this to see if main function is being called
|
146 |
+
st.write("Debug: Main function started")
|
147 |
+
|
148 |
# Create placeholders for model state
|
149 |
if 'clip_model_loaded' not in st.session_state:
|
150 |
st.session_state.clip_model_loaded = False
|
|
|
162 |
|
163 |
# Create expanders for each stage
|
164 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
165 |
+
st.write("Please load the models using the buttons below:")
|
166 |
+
|
167 |
# Button for loading models
|
168 |
clip_col, llm_col, blip_col = st.columns(3)
|
169 |
|
170 |
with clip_col:
|
171 |
if not st.session_state.clip_model_loaded:
|
172 |
if st.button("π₯ Load CLIP Model for Detection", type="primary"):
|
173 |
+
st.success("CLIP model button clicked")
|
174 |
+
# For now, just set as loaded for testing UI
|
175 |
+
st.session_state.clip_model_loaded = True
|
|
|
|
|
|
|
|
|
|
|
176 |
else:
|
177 |
st.success("β
CLIP model loaded and ready!")
|
178 |
|
179 |
with llm_col:
|
180 |
if not st.session_state.llm_model_loaded:
|
181 |
if st.button("π₯ Load Vision LLM for Analysis", type="primary"):
|
182 |
+
st.success("LLM model button clicked")
|
183 |
+
# For now, just set as loaded for testing UI
|
184 |
+
st.session_state.llm_model_loaded = True
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
else:
|
186 |
st.success("β
Vision LLM loaded and ready!")
|
187 |
|
188 |
with blip_col:
|
189 |
if not st.session_state.blip_model_loaded:
|
190 |
if st.button("π₯ Load BLIP for Captioning", type="primary"):
|
191 |
+
st.success("BLIP model button clicked")
|
192 |
+
# For now, just set as loaded for testing UI
|
193 |
+
st.session_state.blip_model_loaded = True
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
else:
|
195 |
st.success("β
BLIP captioning model loaded and ready!")
|
196 |
|
197 |
# Image upload section
|
198 |
+
with st.expander("Stage 2: Image Upload", expanded=True):
|
199 |
st.subheader("Upload an Image")
|
200 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
201 |
|
202 |
if uploaded_file is not None:
|
203 |
+
st.success("Image uploaded successfully!")
|
204 |
# Display the uploaded image
|
205 |
+
try:
|
206 |
+
image = Image.open(uploaded_file).convert("RGB")
|
207 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
208 |
+
st.session_state.current_image = image
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error loading image: {str(e)}")
|
211 |
+
|
212 |
+
# Footer
|
213 |
+
st.markdown("---")
|
214 |
+
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|