Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ st.set_page_config(
|
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
-
st.title("Deepfake Image Analyzer")
|
30 |
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
|
31 |
|
32 |
# Check for GPU availability
|
@@ -39,10 +39,54 @@ def check_gpu():
|
|
39 |
st.sidebar.warning("⚠️ No GPU detected. Analysis will be slower.")
|
40 |
return False
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# ----- GradCAM Implementation -----
|
48 |
|
@@ -514,7 +558,7 @@ def load_llm_model():
|
|
514 |
return None, None
|
515 |
|
516 |
# Analyze image function
|
517 |
-
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, custom_instruction=""):
|
518 |
# Create a prompt that includes GradCAM information
|
519 |
if custom_instruction.strip():
|
520 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
@@ -549,9 +593,9 @@ def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confide
|
|
549 |
with torch.no_grad():
|
550 |
output_ids = model.generate(
|
551 |
**inputs,
|
552 |
-
max_new_tokens=
|
553 |
use_cache=True,
|
554 |
-
temperature=
|
555 |
top_p=0.9
|
556 |
)
|
557 |
|
@@ -566,67 +610,6 @@ def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confide
|
|
566 |
|
567 |
return result
|
568 |
|
569 |
-
# Sidebar chat interface
|
570 |
-
def chat_interface():
|
571 |
-
st.sidebar.title("Deepfake Analysis Chat")
|
572 |
-
|
573 |
-
# Display chat history
|
574 |
-
if 'chat_history' not in st.session_state:
|
575 |
-
st.session_state.chat_history = []
|
576 |
-
|
577 |
-
# Display chat messages
|
578 |
-
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
579 |
-
st.sidebar.markdown(f"**You:** {question}")
|
580 |
-
st.sidebar.markdown(f"**AI:** {answer}")
|
581 |
-
st.sidebar.markdown("---")
|
582 |
-
|
583 |
-
# Only show the chat interface if image has been analyzed
|
584 |
-
if hasattr(st.session_state, 'current_image'):
|
585 |
-
# New question input
|
586 |
-
new_question = st.sidebar.text_area("Ask about the image:", height=100)
|
587 |
-
|
588 |
-
# Send button
|
589 |
-
if st.sidebar.button("Send Question", type="primary"):
|
590 |
-
if new_question:
|
591 |
-
try:
|
592 |
-
# Add caption info if it's the first question
|
593 |
-
caption_text = ""
|
594 |
-
if not st.session_state.chat_history:
|
595 |
-
if hasattr(st.session_state, 'image_caption'):
|
596 |
-
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
597 |
-
if hasattr(st.session_state, 'gradcam_caption'):
|
598 |
-
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
599 |
-
|
600 |
-
full_question = new_question + caption_text
|
601 |
-
else:
|
602 |
-
full_question = new_question
|
603 |
-
|
604 |
-
result = analyze_image_with_llm(
|
605 |
-
st.session_state.current_image,
|
606 |
-
st.session_state.current_overlay,
|
607 |
-
st.session_state.current_face_box,
|
608 |
-
st.session_state.current_pred_label,
|
609 |
-
st.session_state.current_confidence,
|
610 |
-
full_question,
|
611 |
-
st.session_state.llm_model,
|
612 |
-
st.session_state.tokenizer,
|
613 |
-
custom_instruction=CUSTOM_INSTRUCTION
|
614 |
-
)
|
615 |
-
|
616 |
-
# Add to chat history
|
617 |
-
st.session_state.chat_history.append((new_question, result))
|
618 |
-
st.experimental_rerun()
|
619 |
-
|
620 |
-
except Exception as e:
|
621 |
-
st.sidebar.error(f"Error during LLM analysis: {str(e)}")
|
622 |
-
else:
|
623 |
-
st.sidebar.info("Upload and analyze an image to start chatting")
|
624 |
-
|
625 |
-
# Clear chat button
|
626 |
-
if st.session_state.chat_history and st.sidebar.button("Clear Chat History"):
|
627 |
-
st.session_state.chat_history = []
|
628 |
-
st.experimental_rerun()
|
629 |
-
|
630 |
# Main app
|
631 |
def main():
|
632 |
# Initialize session state variables
|
@@ -644,8 +627,9 @@ def main():
|
|
644 |
st.session_state.blip_processor = None
|
645 |
st.session_state.blip_model = None
|
646 |
|
647 |
-
#
|
648 |
-
|
|
|
649 |
|
650 |
# Create expanders for each stage
|
651 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
@@ -795,4 +779,144 @@ def main():
|
|
795 |
except Exception as e:
|
796 |
st.error(f"Error processing image: {str(e)}")
|
797 |
import traceback
|
798 |
-
st.error(traceback.format_exc()) # This will show the full error traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
+
st.title("Advanced Deepfake Image Analyzer")
|
30 |
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
|
31 |
|
32 |
# Check for GPU availability
|
|
|
39 |
st.sidebar.warning("⚠️ No GPU detected. Analysis will be slower.")
|
40 |
return False
|
41 |
|
42 |
+
# Sidebar components
|
43 |
+
st.sidebar.title("Options")
|
44 |
+
|
45 |
+
# Temperature slider
|
46 |
+
temperature = st.sidebar.slider(
|
47 |
+
"Temperature",
|
48 |
+
min_value=0.1,
|
49 |
+
max_value=1.0,
|
50 |
+
value=0.7,
|
51 |
+
step=0.1,
|
52 |
+
help="Higher values make output more random, lower values more deterministic"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Max response length slider
|
56 |
+
max_tokens = st.sidebar.slider(
|
57 |
+
"Maximum Response Length",
|
58 |
+
min_value=100,
|
59 |
+
max_value=1000,
|
60 |
+
value=500,
|
61 |
+
step=50,
|
62 |
+
help="The maximum number of tokens in the response"
|
63 |
+
)
|
64 |
+
|
65 |
+
# Custom instruction text area in sidebar
|
66 |
+
custom_instruction = st.sidebar.text_area(
|
67 |
+
"Custom Instructions (Advanced)",
|
68 |
+
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
|
69 |
+
help="Add specific instructions for the LLM analysis"
|
70 |
+
)
|
71 |
+
|
72 |
+
# About section in sidebar
|
73 |
+
st.sidebar.markdown("---")
|
74 |
+
st.sidebar.subheader("About")
|
75 |
+
st.sidebar.markdown("""
|
76 |
+
This analyzer performs multi-stage detection:
|
77 |
+
1. **Initial Detection**: CLIP-based classifier
|
78 |
+
2. **GradCAM Visualization**: Highlights suspicious regions
|
79 |
+
3. **Image Captioning**: BLIP model describes the image content
|
80 |
+
4. **LLM Analysis**: Fine-tuned Llama 3.2 Vision provides detailed explanations
|
81 |
+
|
82 |
+
The system looks for:
|
83 |
+
- Facial inconsistencies
|
84 |
+
- Unnatural movements
|
85 |
+
- Lighting issues
|
86 |
+
- Texture anomalies
|
87 |
+
- Edge artifacts
|
88 |
+
- Blending problems
|
89 |
+
""")
|
90 |
|
91 |
# ----- GradCAM Implementation -----
|
92 |
|
|
|
558 |
return None, None
|
559 |
|
560 |
# Analyze image function
|
561 |
+
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
562 |
# Create a prompt that includes GradCAM information
|
563 |
if custom_instruction.strip():
|
564 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
|
|
593 |
with torch.no_grad():
|
594 |
output_ids = model.generate(
|
595 |
**inputs,
|
596 |
+
max_new_tokens=max_tokens,
|
597 |
use_cache=True,
|
598 |
+
temperature=temperature,
|
599 |
top_p=0.9
|
600 |
)
|
601 |
|
|
|
610 |
|
611 |
return result
|
612 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
# Main app
|
614 |
def main():
|
615 |
# Initialize session state variables
|
|
|
627 |
st.session_state.blip_processor = None
|
628 |
st.session_state.blip_model = None
|
629 |
|
630 |
+
# Initialize chat history
|
631 |
+
if 'chat_history' not in st.session_state:
|
632 |
+
st.session_state.chat_history = []
|
633 |
|
634 |
# Create expanders for each stage
|
635 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
|
|
779 |
except Exception as e:
|
780 |
st.error(f"Error processing image: {str(e)}")
|
781 |
import traceback
|
782 |
+
st.error(traceback.format_exc()) # This will show the full error traceback
|
783 |
+
|
784 |
+
# Image Analysis Summary section - AFTER Stage 2
|
785 |
+
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
786 |
+
with st.expander("Image Analysis Summary", expanded=True):
|
787 |
+
st.subheader("Generated Descriptions and Analysis")
|
788 |
+
|
789 |
+
# Display image, captions, and results in organized layout with proper formatting
|
790 |
+
col1, col2 = st.columns([1, 2])
|
791 |
+
|
792 |
+
with col1:
|
793 |
+
# Display original image and overlay side by side with controlled size
|
794 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
795 |
+
if hasattr(st.session_state, 'current_overlay'):
|
796 |
+
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
797 |
+
|
798 |
+
with col2:
|
799 |
+
# Detection result
|
800 |
+
if hasattr(st.session_state, 'current_pred_label'):
|
801 |
+
st.markdown("### Detection Result")
|
802 |
+
st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
|
803 |
+
st.markdown("---")
|
804 |
+
|
805 |
+
# Image description
|
806 |
+
if hasattr(st.session_state, 'image_caption'):
|
807 |
+
st.markdown("### Image Description")
|
808 |
+
st.markdown(st.session_state.image_caption)
|
809 |
+
st.markdown("---")
|
810 |
+
|
811 |
+
# GradCAM analysis
|
812 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
813 |
+
st.markdown("### GradCAM Analysis")
|
814 |
+
st.markdown(st.session_state.gradcam_caption)
|
815 |
+
|
816 |
+
# LLM Analysis section - AFTER Image Analysis Summary
|
817 |
+
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
818 |
+
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
819 |
+
st.subheader("Detailed Deepfake Analysis")
|
820 |
+
|
821 |
+
# Display chat history
|
822 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
823 |
+
st.markdown(f"**Question {i+1}:** {question}")
|
824 |
+
st.markdown(f"**Answer:** {answer}")
|
825 |
+
st.markdown("---")
|
826 |
+
|
827 |
+
# Include both captions in the prompt if available
|
828 |
+
caption_text = ""
|
829 |
+
if hasattr(st.session_state, 'image_caption'):
|
830 |
+
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
831 |
+
|
832 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
833 |
+
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
834 |
+
|
835 |
+
# Default question with option to customize
|
836 |
+
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
837 |
+
|
838 |
+
# User input for new question
|
839 |
+
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
840 |
+
|
841 |
+
# Analyze button and Clear Chat button in the same row
|
842 |
+
col1, col2 = st.columns([3, 1])
|
843 |
+
with col1:
|
844 |
+
analyze_button = st.button("🔍 Send Question", type="primary")
|
845 |
+
with col2:
|
846 |
+
clear_button = st.button("🗑️ Clear Chat History")
|
847 |
+
|
848 |
+
if clear_button:
|
849 |
+
st.session_state.chat_history = []
|
850 |
+
st.experimental_rerun()
|
851 |
+
|
852 |
+
if analyze_button and new_question:
|
853 |
+
try:
|
854 |
+
# Add caption info if it's the first question
|
855 |
+
if not st.session_state.chat_history:
|
856 |
+
full_question = new_question + caption_text
|
857 |
+
else:
|
858 |
+
full_question = new_question
|
859 |
+
|
860 |
+
result = analyze_image_with_llm(
|
861 |
+
st.session_state.current_image,
|
862 |
+
st.session_state.current_overlay,
|
863 |
+
st.session_state.current_face_box,
|
864 |
+
st.session_state.current_pred_label,
|
865 |
+
st.session_state.current_confidence,
|
866 |
+
full_question,
|
867 |
+
st.session_state.llm_model,
|
868 |
+
st.session_state.tokenizer,
|
869 |
+
temperature=temperature,
|
870 |
+
max_tokens=max_tokens,
|
871 |
+
custom_instruction=custom_instruction
|
872 |
+
)
|
873 |
+
|
874 |
+
# Add to chat history
|
875 |
+
st.session_state.chat_history.append((new_question, result))
|
876 |
+
|
877 |
+
# Display the latest result too
|
878 |
+
st.success("✅ Analysis complete!")
|
879 |
+
|
880 |
+
# Check if the result contains both technical and non-technical explanations
|
881 |
+
if "Technical" in result and "Non-Technical" in result:
|
882 |
+
try:
|
883 |
+
# Split the result into technical and non-technical sections
|
884 |
+
parts = result.split("Non-Technical")
|
885 |
+
technical = parts[0]
|
886 |
+
non_technical = "Non-Technical" + parts[1]
|
887 |
+
|
888 |
+
# Display in two columns
|
889 |
+
tech_col, simple_col = st.columns(2)
|
890 |
+
with tech_col:
|
891 |
+
st.subheader("Technical Analysis")
|
892 |
+
st.markdown(technical)
|
893 |
+
|
894 |
+
with simple_col:
|
895 |
+
st.subheader("Simple Explanation")
|
896 |
+
st.markdown(non_technical)
|
897 |
+
except Exception as e:
|
898 |
+
# Fallback if splitting fails
|
899 |
+
st.subheader("Analysis Result")
|
900 |
+
st.markdown(result)
|
901 |
+
else:
|
902 |
+
# Just display the whole result
|
903 |
+
st.subheader("Analysis Result")
|
904 |
+
st.markdown(result)
|
905 |
+
|
906 |
+
# Rerun to update the chat history display
|
907 |
+
st.experimental_rerun()
|
908 |
+
|
909 |
+
except Exception as e:
|
910 |
+
st.error(f"Error during LLM analysis: {str(e)}")
|
911 |
+
|
912 |
+
elif not hasattr(st.session_state, 'current_image'):
|
913 |
+
st.warning("⚠️ Please upload an image and complete the initial detection first.")
|
914 |
+
else:
|
915 |
+
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
916 |
+
|
917 |
+
# Footer
|
918 |
+
st.markdown("---")
|
919 |
+
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|
920 |
+
|
921 |
+
if __name__ == "__main__":
|
922 |
+
main()
|