Update app.py
Browse files
app.py
CHANGED
@@ -436,24 +436,60 @@ def load_blip_model():
|
|
436 |
st.error(f"Error loading BLIP model: {str(e)}")
|
437 |
return None, None
|
438 |
|
439 |
-
# Function to generate image caption using BLIP
|
440 |
-
def
|
441 |
"""
|
442 |
-
Generate a
|
443 |
"""
|
444 |
try:
|
445 |
# Check for available GPU
|
446 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
447 |
model = model.to(device)
|
448 |
|
449 |
-
#
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
# Generate caption
|
459 |
with torch.no_grad():
|
@@ -462,24 +498,8 @@ def generate_image_caption(image, processor, model, is_gradcam=False, max_length
|
|
462 |
# Decode the output
|
463 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
464 |
|
465 |
-
#
|
466 |
-
|
467 |
-
caption = caption.replace("a heatmap showing", "").strip()
|
468 |
-
|
469 |
-
# Format based on image type
|
470 |
-
if is_gradcam:
|
471 |
-
return format_gradcam_caption(caption)
|
472 |
-
else:
|
473 |
-
return format_image_caption(caption)
|
474 |
-
|
475 |
-
except Exception as e:
|
476 |
-
st.error(f"Error generating caption: {str(e)}")
|
477 |
-
return "Error generating caption"
|
478 |
-
|
479 |
-
def format_image_caption(caption):
|
480 |
-
"""Format caption into a structured description with headings"""
|
481 |
-
|
482 |
-
structured_caption = f"""
|
483 |
**Subject**: The image shows a person in a photograph.
|
484 |
|
485 |
**Appearance**: {caption}
|
@@ -492,23 +512,11 @@ def format_image_caption(caption):
|
|
492 |
|
493 |
**Notable Elements**: The facial features and expression are the central focus of the image.
|
494 |
"""
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
structured_caption = f"""
|
501 |
-
**Main Focus Area**: The heatmap is primarily focused on the facial region of the person.
|
502 |
-
|
503 |
-
**High Activation Regions**: The red/yellow areas highlight important features that the model is focusing on. {caption}
|
504 |
-
|
505 |
-
**Medium Activation Regions**: The green/cyan areas correspond to regions of medium importance in the detection process, typically including parts of the face and surrounding areas.
|
506 |
-
|
507 |
-
**Low Activation Regions**: The blue/dark blue areas represent features that have less impact on the model's decision, usually the background and peripheral elements.
|
508 |
-
|
509 |
-
**Activation Pattern**: The overall pattern suggests the model is primarily analyzing facial features to make its determination of authenticity.
|
510 |
-
"""
|
511 |
-
return structured_caption.strip()
|
512 |
|
513 |
# ----- Fine-tuned Vision LLM -----
|
514 |
|
@@ -520,7 +528,6 @@ def fix_cross_attention_mask(inputs):
|
|
520 |
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
521 |
device=inputs['cross_attention_mask'].device)
|
522 |
inputs['cross_attention_mask'] = new_mask
|
523 |
-
st.success("Fixed cross-attention mask dimensions")
|
524 |
return inputs
|
525 |
|
526 |
# Load model function
|
@@ -605,7 +612,7 @@ def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confide
|
|
605 |
|
606 |
# Main app
|
607 |
def main():
|
608 |
-
#
|
609 |
if 'clip_model_loaded' not in st.session_state:
|
610 |
st.session_state.clip_model_loaded = False
|
611 |
st.session_state.clip_model = None
|
@@ -620,12 +627,16 @@ def main():
|
|
620 |
st.session_state.blip_processor = None
|
621 |
st.session_state.blip_model = None
|
622 |
|
|
|
|
|
|
|
|
|
623 |
# Create expanders for each stage
|
624 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
625 |
st.write("Please load the models using the buttons below:")
|
626 |
|
627 |
# Button for loading models
|
628 |
-
clip_col,
|
629 |
|
630 |
with clip_col:
|
631 |
if not st.session_state.clip_model_loaded:
|
@@ -641,21 +652,6 @@ def main():
|
|
641 |
else:
|
642 |
st.success("✅ CLIP model loaded and ready!")
|
643 |
|
644 |
-
with llm_col:
|
645 |
-
if not st.session_state.llm_model_loaded:
|
646 |
-
if st.button("📥 Load Vision LLM for Analysis", type="primary"):
|
647 |
-
# Load LLM model
|
648 |
-
model, tokenizer = load_llm_model()
|
649 |
-
if model is not None and tokenizer is not None:
|
650 |
-
st.session_state.llm_model = model
|
651 |
-
st.session_state.tokenizer = tokenizer
|
652 |
-
st.session_state.llm_model_loaded = True
|
653 |
-
st.success("✅ Vision LLM loaded successfully!")
|
654 |
-
else:
|
655 |
-
st.error("❌ Failed to load Vision LLM.")
|
656 |
-
else:
|
657 |
-
st.success("✅ Vision LLM loaded and ready!")
|
658 |
-
|
659 |
with blip_col:
|
660 |
if not st.session_state.blip_model_loaded:
|
661 |
if st.button("📥 Load BLIP for Captioning", type="primary"):
|
@@ -670,6 +666,21 @@ def main():
|
|
670 |
st.error("❌ Failed to load BLIP model.")
|
671 |
else:
|
672 |
st.success("✅ BLIP captioning model loaded and ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
|
674 |
# Image upload section
|
675 |
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
|
@@ -692,12 +703,11 @@ def main():
|
|
692 |
caption = generate_image_caption(
|
693 |
image,
|
694 |
st.session_state.blip_processor,
|
695 |
-
st.session_state.blip_model
|
696 |
-
is_gradcam=False
|
697 |
)
|
698 |
st.session_state.image_caption = caption
|
699 |
|
700 |
-
# Store caption but don't display it
|
701 |
|
702 |
# Detect with CLIP model if loaded
|
703 |
if st.session_state.clip_model_loaded:
|
@@ -732,11 +742,8 @@ def main():
|
|
732 |
|
733 |
# Display results
|
734 |
with col2:
|
735 |
-
|
736 |
-
|
737 |
-
st.metric("Prediction", pred_label)
|
738 |
-
with result_col2:
|
739 |
-
st.metric("Confidence", f"{confidence:.2%}")
|
740 |
|
741 |
# GradCAM visualization
|
742 |
st.subheader("GradCAM Visualization")
|
@@ -750,16 +757,14 @@ def main():
|
|
750 |
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
751 |
if st.session_state.blip_model_loaded:
|
752 |
with st.spinner("Analyzing GradCAM visualization..."):
|
753 |
-
gradcam_caption =
|
754 |
overlay,
|
755 |
st.session_state.blip_processor,
|
756 |
-
st.session_state.blip_model
|
757 |
-
is_gradcam=True,
|
758 |
-
max_length=150 # Longer for detailed analysis
|
759 |
)
|
760 |
st.session_state.gradcam_caption = gradcam_caption
|
761 |
|
762 |
-
# Store caption but don't display it
|
763 |
|
764 |
# Save results in session state for LLM analysis
|
765 |
st.session_state.current_image = image
|
@@ -776,11 +781,49 @@ def main():
|
|
776 |
import traceback
|
777 |
st.error(traceback.format_exc()) # This will show the full error traceback
|
778 |
|
779 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
781 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
782 |
st.subheader("Detailed Deepfake Analysis")
|
783 |
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
# Include both captions in the prompt if available
|
785 |
caption_text = ""
|
786 |
if hasattr(st.session_state, 'image_caption'):
|
@@ -790,19 +833,37 @@ def main():
|
|
790 |
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
791 |
|
792 |
# Default question with option to customize
|
793 |
-
default_question = f"This image has been classified as {st.session_state.current_pred_label}.
|
794 |
-
question = st.text_area("Question/Prompt:", value=default_question, height=100)
|
795 |
|
796 |
-
#
|
797 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
798 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
result = analyze_image_with_llm(
|
800 |
st.session_state.current_image,
|
801 |
st.session_state.current_overlay,
|
802 |
st.session_state.current_face_box,
|
803 |
st.session_state.current_pred_label,
|
804 |
st.session_state.current_confidence,
|
805 |
-
|
806 |
st.session_state.llm_model,
|
807 |
st.session_state.tokenizer,
|
808 |
temperature=temperature,
|
@@ -810,7 +871,10 @@ def main():
|
|
810 |
custom_instruction=custom_instruction
|
811 |
)
|
812 |
|
813 |
-
#
|
|
|
|
|
|
|
814 |
st.success("✅ Analysis complete!")
|
815 |
|
816 |
# Check if the result contains both technical and non-technical explanations
|
@@ -822,12 +886,12 @@ def main():
|
|
822 |
non_technical = "Non-Technical" + parts[1]
|
823 |
|
824 |
# Display in two columns
|
825 |
-
|
826 |
-
with
|
827 |
st.subheader("Technical Analysis")
|
828 |
st.markdown(technical)
|
829 |
|
830 |
-
with
|
831 |
st.subheader("Simple Explanation")
|
832 |
st.markdown(non_technical)
|
833 |
except Exception as e:
|
@@ -838,6 +902,10 @@ def main():
|
|
838 |
# Just display the whole result
|
839 |
st.subheader("Analysis Result")
|
840 |
st.markdown(result)
|
|
|
|
|
|
|
|
|
841 |
except Exception as e:
|
842 |
st.error(f"Error during LLM analysis: {str(e)}")
|
843 |
|
@@ -846,36 +914,6 @@ def main():
|
|
846 |
else:
|
847 |
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
848 |
|
849 |
-
# Summary section with caption
|
850 |
-
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
851 |
-
with st.expander("Image Analysis Summary", expanded=True):
|
852 |
-
st.subheader("Generated Descriptions and Analysis")
|
853 |
-
|
854 |
-
# Display image, captions, and results in organized layout
|
855 |
-
col1, col2 = st.columns([1, 2])
|
856 |
-
|
857 |
-
with col1:
|
858 |
-
# Display original image and overlay side by side with controlled size
|
859 |
-
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
860 |
-
if hasattr(st.session_state, 'current_overlay'):
|
861 |
-
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
862 |
-
|
863 |
-
with col2:
|
864 |
-
# Detection result
|
865 |
-
if hasattr(st.session_state, 'current_pred_label'):
|
866 |
-
st.markdown(f"### Detection Result:")
|
867 |
-
st.markdown(f"Classification: **{st.session_state.current_pred_label}** (Confidence: {st.session_state.current_confidence:.2%})")
|
868 |
-
|
869 |
-
# Image description
|
870 |
-
if hasattr(st.session_state, 'image_caption'):
|
871 |
-
st.markdown("### Image Description:")
|
872 |
-
st.markdown(st.session_state.image_caption)
|
873 |
-
|
874 |
-
# GradCAM analysis
|
875 |
-
if hasattr(st.session_state, 'gradcam_caption'):
|
876 |
-
st.markdown("### GradCAM Analysis:")
|
877 |
-
st.markdown(st.session_state.gradcam_caption)
|
878 |
-
|
879 |
# Footer
|
880 |
st.markdown("---")
|
881 |
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|
|
|
436 |
st.error(f"Error loading BLIP model: {str(e)}")
|
437 |
return None, None
|
438 |
|
439 |
+
# Function to generate image caption using BLIP's VQA approach for GradCAM
|
440 |
+
def generate_gradcam_caption(image, processor, model, max_length=60):
|
441 |
"""
|
442 |
+
Generate a detailed analysis of GradCAM visualization using multiple questions
|
443 |
"""
|
444 |
try:
|
445 |
# Check for available GPU
|
446 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
447 |
model = model.to(device)
|
448 |
|
449 |
+
# Multiple specific questions about the GradCAM visualization
|
450 |
+
questions = [
|
451 |
+
"What facial features are highlighted by the red and yellow areas in this heatmap?",
|
452 |
+
"What does this facial heat map visualization show?",
|
453 |
+
"What patterns do you see in this facial heatmap visualization?"
|
454 |
+
]
|
455 |
+
|
456 |
+
# Get answers to each question
|
457 |
+
answers = []
|
458 |
+
for question in questions:
|
459 |
+
inputs = processor(image, text=question, return_tensors="pt").to(device)
|
460 |
+
with torch.no_grad():
|
461 |
+
output = model.generate(**inputs, max_length=max_length, num_beams=5)
|
462 |
+
answer = processor.decode(output[0], skip_special_tokens=True)
|
463 |
+
answers.append(answer)
|
464 |
+
|
465 |
+
# Format answers into a structured analysis
|
466 |
+
structured_output = f"""
|
467 |
+
**Main Focus Area**: The heatmap is primarily focused on the facial region of the person.
|
468 |
+
|
469 |
+
**High Activation Regions**: The red/yellow areas highlight {answers[0]}
|
470 |
+
|
471 |
+
**Medium Activation Regions**: The green/cyan areas correspond to regions of medium importance in the detection process, typically including parts of the face and surrounding areas.
|
472 |
+
|
473 |
+
**Low Activation Regions**: The blue/dark blue areas represent features that have less impact on the model's decision, usually the background and peripheral elements.
|
474 |
+
|
475 |
+
**Activation Pattern**: {answers[2]}
|
476 |
+
"""
|
477 |
+
return structured_output.strip()
|
478 |
+
|
479 |
+
except Exception as e:
|
480 |
+
st.error(f"Error analyzing GradCAM: {str(e)}")
|
481 |
+
return "Error analyzing GradCAM visualization"
|
482 |
+
|
483 |
+
# Function to generate caption for original image
|
484 |
+
def generate_image_caption(image, processor, model, max_length=75, num_beams=5):
|
485 |
+
"""Generate a caption for the original image using BLIP model"""
|
486 |
+
try:
|
487 |
+
# Check for available GPU
|
488 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
489 |
+
model = model.to(device)
|
490 |
+
|
491 |
+
# For original image, use unconditional captioning
|
492 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
493 |
|
494 |
# Generate caption
|
495 |
with torch.no_grad():
|
|
|
498 |
# Decode the output
|
499 |
caption = processor.decode(output[0], skip_special_tokens=True)
|
500 |
|
501 |
+
# Format into structured description
|
502 |
+
structured_caption = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
**Subject**: The image shows a person in a photograph.
|
504 |
|
505 |
**Appearance**: {caption}
|
|
|
512 |
|
513 |
**Notable Elements**: The facial features and expression are the central focus of the image.
|
514 |
"""
|
515 |
+
return structured_caption.strip()
|
516 |
+
|
517 |
+
except Exception as e:
|
518 |
+
st.error(f"Error generating caption: {str(e)}")
|
519 |
+
return "Error generating caption"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
# ----- Fine-tuned Vision LLM -----
|
522 |
|
|
|
528 |
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
529 |
device=inputs['cross_attention_mask'].device)
|
530 |
inputs['cross_attention_mask'] = new_mask
|
|
|
531 |
return inputs
|
532 |
|
533 |
# Load model function
|
|
|
612 |
|
613 |
# Main app
|
614 |
def main():
|
615 |
+
# Initialize session state variables
|
616 |
if 'clip_model_loaded' not in st.session_state:
|
617 |
st.session_state.clip_model_loaded = False
|
618 |
st.session_state.clip_model = None
|
|
|
627 |
st.session_state.blip_processor = None
|
628 |
st.session_state.blip_model = None
|
629 |
|
630 |
+
# Initialize chat history
|
631 |
+
if 'chat_history' not in st.session_state:
|
632 |
+
st.session_state.chat_history = []
|
633 |
+
|
634 |
# Create expanders for each stage
|
635 |
with st.expander("Stage 1: Model Loading", expanded=True):
|
636 |
st.write("Please load the models using the buttons below:")
|
637 |
|
638 |
# Button for loading models
|
639 |
+
clip_col, blip_col, llm_col = st.columns(3)
|
640 |
|
641 |
with clip_col:
|
642 |
if not st.session_state.clip_model_loaded:
|
|
|
652 |
else:
|
653 |
st.success("✅ CLIP model loaded and ready!")
|
654 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
with blip_col:
|
656 |
if not st.session_state.blip_model_loaded:
|
657 |
if st.button("📥 Load BLIP for Captioning", type="primary"):
|
|
|
666 |
st.error("❌ Failed to load BLIP model.")
|
667 |
else:
|
668 |
st.success("✅ BLIP captioning model loaded and ready!")
|
669 |
+
|
670 |
+
with llm_col:
|
671 |
+
if not st.session_state.llm_model_loaded:
|
672 |
+
if st.button("📥 Load Vision LLM for Analysis", type="primary"):
|
673 |
+
# Load LLM model
|
674 |
+
model, tokenizer = load_llm_model()
|
675 |
+
if model is not None and tokenizer is not None:
|
676 |
+
st.session_state.llm_model = model
|
677 |
+
st.session_state.tokenizer = tokenizer
|
678 |
+
st.session_state.llm_model_loaded = True
|
679 |
+
st.success("✅ Vision LLM loaded successfully!")
|
680 |
+
else:
|
681 |
+
st.error("❌ Failed to load Vision LLM.")
|
682 |
+
else:
|
683 |
+
st.success("✅ Vision LLM loaded and ready!")
|
684 |
|
685 |
# Image upload section
|
686 |
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
|
|
|
703 |
caption = generate_image_caption(
|
704 |
image,
|
705 |
st.session_state.blip_processor,
|
706 |
+
st.session_state.blip_model
|
|
|
707 |
)
|
708 |
st.session_state.image_caption = caption
|
709 |
|
710 |
+
# Store caption but don't display it yet
|
711 |
|
712 |
# Detect with CLIP model if loaded
|
713 |
if st.session_state.clip_model_loaded:
|
|
|
742 |
|
743 |
# Display results
|
744 |
with col2:
|
745 |
+
st.markdown("### Detection Result")
|
746 |
+
st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
|
|
|
|
|
|
|
747 |
|
748 |
# GradCAM visualization
|
749 |
st.subheader("GradCAM Visualization")
|
|
|
757 |
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
758 |
if st.session_state.blip_model_loaded:
|
759 |
with st.spinner("Analyzing GradCAM visualization..."):
|
760 |
+
gradcam_caption = generate_gradcam_caption(
|
761 |
overlay,
|
762 |
st.session_state.blip_processor,
|
763 |
+
st.session_state.blip_model
|
|
|
|
|
764 |
)
|
765 |
st.session_state.gradcam_caption = gradcam_caption
|
766 |
|
767 |
+
# Store caption but don't display it yet
|
768 |
|
769 |
# Save results in session state for LLM analysis
|
770 |
st.session_state.current_image = image
|
|
|
781 |
import traceback
|
782 |
st.error(traceback.format_exc()) # This will show the full error traceback
|
783 |
|
784 |
+
# Image Analysis Summary section - AFTER Stage 2
|
785 |
+
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
786 |
+
with st.expander("Image Analysis Summary", expanded=True):
|
787 |
+
st.subheader("Generated Descriptions and Analysis")
|
788 |
+
|
789 |
+
# Display image, captions, and results in organized layout with proper formatting
|
790 |
+
col1, col2 = st.columns([1, 2])
|
791 |
+
|
792 |
+
with col1:
|
793 |
+
# Display original image and overlay side by side with controlled size
|
794 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
795 |
+
if hasattr(st.session_state, 'current_overlay'):
|
796 |
+
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
797 |
+
|
798 |
+
with col2:
|
799 |
+
# Detection result
|
800 |
+
if hasattr(st.session_state, 'current_pred_label'):
|
801 |
+
st.markdown("### Detection Result")
|
802 |
+
st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
|
803 |
+
st.markdown("---")
|
804 |
+
|
805 |
+
# Image description
|
806 |
+
if hasattr(st.session_state, 'image_caption'):
|
807 |
+
st.markdown("### Image Description")
|
808 |
+
st.markdown(st.session_state.image_caption)
|
809 |
+
st.markdown("---")
|
810 |
+
|
811 |
+
# GradCAM analysis
|
812 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
813 |
+
st.markdown("### GradCAM Analysis")
|
814 |
+
st.markdown(st.session_state.gradcam_caption)
|
815 |
+
|
816 |
+
# LLM Analysis section - AFTER Image Analysis Summary
|
817 |
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
818 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
819 |
st.subheader("Detailed Deepfake Analysis")
|
820 |
|
821 |
+
# Display chat history
|
822 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
823 |
+
st.markdown(f"**Question {i+1}:** {question}")
|
824 |
+
st.markdown(f"**Answer:** {answer}")
|
825 |
+
st.markdown("---")
|
826 |
+
|
827 |
# Include both captions in the prompt if available
|
828 |
caption_text = ""
|
829 |
if hasattr(st.session_state, 'image_caption'):
|
|
|
833 |
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
834 |
|
835 |
# Default question with option to customize
|
836 |
+
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
|
|
837 |
|
838 |
+
# User input for new question
|
839 |
+
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
840 |
+
|
841 |
+
# Analyze button and Clear Chat button in the same row
|
842 |
+
col1, col2 = st.columns([3, 1])
|
843 |
+
with col1:
|
844 |
+
analyze_button = st.button("🔍 Send Question", type="primary")
|
845 |
+
with col2:
|
846 |
+
clear_button = st.button("🗑️ Clear Chat History")
|
847 |
+
|
848 |
+
if clear_button:
|
849 |
+
st.session_state.chat_history = []
|
850 |
+
st.experimental_rerun()
|
851 |
+
|
852 |
+
if analyze_button and new_question:
|
853 |
try:
|
854 |
+
# Add caption info if it's the first question
|
855 |
+
if not st.session_state.chat_history:
|
856 |
+
full_question = new_question + caption_text
|
857 |
+
else:
|
858 |
+
full_question = new_question
|
859 |
+
|
860 |
result = analyze_image_with_llm(
|
861 |
st.session_state.current_image,
|
862 |
st.session_state.current_overlay,
|
863 |
st.session_state.current_face_box,
|
864 |
st.session_state.current_pred_label,
|
865 |
st.session_state.current_confidence,
|
866 |
+
full_question,
|
867 |
st.session_state.llm_model,
|
868 |
st.session_state.tokenizer,
|
869 |
temperature=temperature,
|
|
|
871 |
custom_instruction=custom_instruction
|
872 |
)
|
873 |
|
874 |
+
# Add to chat history
|
875 |
+
st.session_state.chat_history.append((new_question, result))
|
876 |
+
|
877 |
+
# Display the latest result too
|
878 |
st.success("✅ Analysis complete!")
|
879 |
|
880 |
# Check if the result contains both technical and non-technical explanations
|
|
|
886 |
non_technical = "Non-Technical" + parts[1]
|
887 |
|
888 |
# Display in two columns
|
889 |
+
tech_col, simple_col = st.columns(2)
|
890 |
+
with tech_col:
|
891 |
st.subheader("Technical Analysis")
|
892 |
st.markdown(technical)
|
893 |
|
894 |
+
with simple_col:
|
895 |
st.subheader("Simple Explanation")
|
896 |
st.markdown(non_technical)
|
897 |
except Exception as e:
|
|
|
902 |
# Just display the whole result
|
903 |
st.subheader("Analysis Result")
|
904 |
st.markdown(result)
|
905 |
+
|
906 |
+
# Rerun to update the chat history display
|
907 |
+
st.experimental_rerun()
|
908 |
+
|
909 |
except Exception as e:
|
910 |
st.error(f"Error during LLM analysis: {str(e)}")
|
911 |
|
|
|
914 |
else:
|
915 |
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
916 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
917 |
# Footer
|
918 |
st.markdown("---")
|
919 |
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|