Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
from transformers import AutoProcessor, BitsAndBytesConfig, MllamaForCausalLM
|
7 |
from peft import PeftModel
|
|
|
8 |
|
9 |
# Page config
|
10 |
st.set_page_config(
|
11 |
-
page_title="Deepfake
|
12 |
page_icon="🔍",
|
13 |
layout="wide"
|
14 |
)
|
@@ -17,50 +17,73 @@ st.set_page_config(
|
|
17 |
st.title("Deepfake Image Analyzer")
|
18 |
st.markdown("Upload an image to analyze it for possible deepfake manipulation")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@st.cache_resource
|
21 |
def load_model():
|
22 |
-
"""Load model and processor
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Function to fix cross-attention masks
|
50 |
def fix_processor_outputs(inputs):
|
|
|
51 |
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
52 |
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
|
53 |
-
visual_features = 6404 # The exact dimension
|
54 |
-
new_mask = torch.ones(
|
55 |
-
|
|
|
|
|
56 |
inputs['cross_attention_mask'] = new_mask
|
57 |
-
|
58 |
-
return inputs
|
59 |
-
|
60 |
-
# Load model on first run
|
61 |
-
with st.spinner("Loading model... this may take a minute."):
|
62 |
-
model, processor = load_model()
|
63 |
-
st.success("Model loaded successfully!")
|
64 |
|
65 |
# Create sidebar with options
|
66 |
with st.sidebar:
|
@@ -76,65 +99,118 @@ with st.sidebar:
|
|
76 |
)
|
77 |
|
78 |
st.markdown("### About")
|
79 |
-
st.markdown("
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Main content area - file uploader
|
83 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
84 |
|
85 |
-
if
|
|
|
|
|
|
|
86 |
# Display the image
|
87 |
image = Image.open(uploaded_file).convert('RGB')
|
88 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
89 |
|
90 |
# Analyze button
|
91 |
if st.button("Analyze Image"):
|
92 |
-
with st.spinner("Analyzing the image..."):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
else:
|
140 |
-
st.info("Please upload an image to begin analysis")
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
import os
|
4 |
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, MllamaForCausalLM, BitsAndBytesConfig
|
|
|
6 |
from peft import PeftModel
|
7 |
+
import gc
|
8 |
|
9 |
# Page config
|
10 |
st.set_page_config(
|
11 |
+
page_title="Deepfake Image Analyzer",
|
12 |
page_icon="🔍",
|
13 |
layout="wide"
|
14 |
)
|
|
|
17 |
st.title("Deepfake Image Analyzer")
|
18 |
st.markdown("Upload an image to analyze it for possible deepfake manipulation")
|
19 |
|
20 |
+
# Function to free up memory
|
21 |
+
def free_memory():
|
22 |
+
gc.collect()
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
torch.cuda.ipc_collect()
|
26 |
+
|
27 |
+
# Helper functions
|
28 |
+
def init_device():
|
29 |
+
"""Set the appropriate device and return it"""
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
st.sidebar.success("✓ GPU available: Using CUDA")
|
32 |
+
return "cuda"
|
33 |
+
else:
|
34 |
+
st.sidebar.warning("⚠️ No GPU detected: Using CPU (analysis will be slow)")
|
35 |
+
return "cpu"
|
36 |
+
|
37 |
+
# Set device
|
38 |
+
device = init_device()
|
39 |
+
|
40 |
@st.cache_resource
|
41 |
def load_model():
|
42 |
+
"""Load model and processor with caching to avoid reloading"""
|
43 |
+
try:
|
44 |
+
# Load base model
|
45 |
+
base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
|
46 |
+
processor = AutoProcessor.from_pretrained(base_model_id)
|
47 |
+
|
48 |
+
# Configure 4-bit quantization with correct dtype
|
49 |
+
quantization_config = BitsAndBytesConfig(
|
50 |
+
load_in_4bit=True,
|
51 |
+
bnb_4bit_compute_dtype=torch.float16,
|
52 |
+
bnb_4bit_quant_type="nf4",
|
53 |
+
bnb_4bit_use_double_quant=True
|
54 |
+
)
|
55 |
+
|
56 |
+
# Load model with explicit dtype settings using MllamaForCausalLM
|
57 |
+
model = MllamaForCausalLM.from_pretrained(
|
58 |
+
base_model_id,
|
59 |
+
device_map="auto",
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
quantization_config=quantization_config
|
62 |
+
)
|
63 |
+
|
64 |
+
# Load adapter
|
65 |
+
adapter_id = "saakshigupta/deepfake-explainer-1"
|
66 |
+
model = PeftModel.from_pretrained(model, adapter_id)
|
67 |
+
|
68 |
+
return model, processor
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Error loading model: {str(e)}")
|
72 |
+
return None, None
|
73 |
|
74 |
# Function to fix cross-attention masks
|
75 |
def fix_processor_outputs(inputs):
|
76 |
+
"""Fix cross-attention mask dimensions if needed"""
|
77 |
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
78 |
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
|
79 |
+
visual_features = 6404 # The exact dimension used in training
|
80 |
+
new_mask = torch.ones(
|
81 |
+
(batch_size, seq_len, visual_features, num_tiles),
|
82 |
+
device=inputs['cross_attention_mask'].device
|
83 |
+
)
|
84 |
inputs['cross_attention_mask'] = new_mask
|
85 |
+
return True, inputs
|
86 |
+
return False, inputs
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Create sidebar with options
|
89 |
with st.sidebar:
|
|
|
99 |
)
|
100 |
|
101 |
st.markdown("### About")
|
102 |
+
st.markdown("""
|
103 |
+
This app uses a fine-tuned Llama 3.2 Vision model to detect and explain deepfakes.
|
104 |
+
|
105 |
+
The analyzer looks for:
|
106 |
+
- Inconsistencies in facial features
|
107 |
+
- Unusual lighting or shadows
|
108 |
+
- Unnatural blur patterns
|
109 |
+
- Artifacts around edges
|
110 |
+
- Texture inconsistencies
|
111 |
+
|
112 |
+
Model by [saakshigupta](https://huggingface.co/saakshigupta/deepfake-explainer-1)
|
113 |
+
""")
|
114 |
+
|
115 |
+
# Load model on app startup with a progress bar
|
116 |
+
if 'model_loaded' not in st.session_state:
|
117 |
+
progress_bar = st.progress(0)
|
118 |
+
st.info("Loading model... this may take a minute.")
|
119 |
+
|
120 |
+
for i in range(10):
|
121 |
+
# Simulate progress while model loads
|
122 |
+
progress_bar.progress((i + 1) * 10)
|
123 |
+
if i == 2:
|
124 |
+
# Start loading the model at 30% progress
|
125 |
+
model, processor = load_model()
|
126 |
+
if model is not None:
|
127 |
+
st.session_state['model'] = model
|
128 |
+
st.session_state['processor'] = processor
|
129 |
+
st.session_state['model_loaded'] = True
|
130 |
+
|
131 |
+
progress_bar.empty()
|
132 |
+
|
133 |
+
if 'model_loaded' in st.session_state and st.session_state['model_loaded']:
|
134 |
+
st.success("Model loaded successfully!")
|
135 |
+
else:
|
136 |
+
st.error("Failed to load model. Try refreshing the page.")
|
137 |
|
138 |
# Main content area - file uploader
|
139 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
140 |
|
141 |
+
# Check if model is loaded
|
142 |
+
model_loaded = 'model_loaded' in st.session_state and st.session_state['model_loaded']
|
143 |
+
|
144 |
+
if uploaded_file is not None and model_loaded:
|
145 |
# Display the image
|
146 |
image = Image.open(uploaded_file).convert('RGB')
|
147 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
148 |
|
149 |
# Analyze button
|
150 |
if st.button("Analyze Image"):
|
151 |
+
with st.spinner("Analyzing the image... This may take 15-30 seconds"):
|
152 |
+
try:
|
153 |
+
# Get components from session state
|
154 |
+
model = st.session_state['model']
|
155 |
+
processor = st.session_state['processor']
|
156 |
+
|
157 |
+
# Process the image
|
158 |
+
inputs = processor(text=custom_prompt, images=image, return_tensors="pt")
|
159 |
+
|
160 |
+
# Fix cross-attention mask
|
161 |
+
fixed, inputs = fix_processor_outputs(inputs)
|
162 |
+
if fixed:
|
163 |
+
st.info("Fixed cross-attention mask dimensions")
|
164 |
+
|
165 |
+
# Move to device
|
166 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
167 |
+
|
168 |
+
# Generate the analysis
|
169 |
+
with torch.no_grad():
|
170 |
+
output_ids = model.generate(
|
171 |
+
**inputs,
|
172 |
+
max_new_tokens=max_length,
|
173 |
+
temperature=temperature,
|
174 |
+
top_p=0.9
|
175 |
+
)
|
176 |
+
|
177 |
+
# Decode the output
|
178 |
+
response = processor.decode(output_ids[0], skip_special_tokens=True)
|
179 |
+
|
180 |
+
# Extract the actual response (removing the prompt)
|
181 |
+
if custom_prompt in response:
|
182 |
+
result = response.split(custom_prompt)[-1].strip()
|
183 |
+
else:
|
184 |
+
result = response
|
185 |
+
|
186 |
+
# Display result in a nice format
|
187 |
+
st.success("Analysis complete!")
|
188 |
+
|
189 |
+
# Show technical and non-technical explanations separately if they exist
|
190 |
+
if "Technical Explanation:" in result and "Non-Technical Explanation:" in result:
|
191 |
+
technical, non_technical = result.split("Non-Technical Explanation:")
|
192 |
+
technical = technical.replace("Technical Explanation:", "").strip()
|
193 |
+
|
194 |
+
col1, col2 = st.columns(2)
|
195 |
+
with col1:
|
196 |
+
st.subheader("Technical Analysis")
|
197 |
+
st.write(technical)
|
198 |
+
|
199 |
+
with col2:
|
200 |
+
st.subheader("Simple Explanation")
|
201 |
+
st.write(non_technical)
|
202 |
+
else:
|
203 |
+
st.subheader("Analysis Result")
|
204 |
+
st.write(result)
|
205 |
+
|
206 |
+
# Free memory after analysis
|
207 |
+
free_memory()
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error analyzing image: {str(e)}")
|
211 |
else:
|
212 |
+
st.info("Please upload an image to begin analysis")
|
213 |
+
|
214 |
+
# Add footer
|
215 |
+
st.markdown("---")
|
216 |
+
st.markdown("Deepfake Image Analyzer")
|