Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
import gc
|
|
|
|
|
6 |
|
7 |
# Page config
|
8 |
st.set_page_config(
|
@@ -23,7 +25,6 @@ def free_memory():
|
|
23 |
|
24 |
# Helper function to check CUDA
|
25 |
def init_device():
|
26 |
-
"""Set the appropriate device and return it"""
|
27 |
if torch.cuda.is_available():
|
28 |
st.sidebar.success("✓ GPU available: Using CUDA")
|
29 |
return "cuda"
|
@@ -36,31 +37,26 @@ device = init_device()
|
|
36 |
|
37 |
@st.cache_resource
|
38 |
def load_model():
|
39 |
-
"""Load model
|
40 |
try:
|
41 |
-
#
|
42 |
-
|
43 |
-
from unsloth import FastVisionModel
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
model, tokenizer = FastVisionModel.from_pretrained(
|
50 |
base_model_id,
|
51 |
-
|
52 |
-
torch_dtype=torch.float16
|
53 |
)
|
54 |
|
55 |
-
#
|
56 |
-
FastVisionModel.for_inference(model)
|
57 |
-
|
58 |
-
# Load the fine-tuned adapter
|
59 |
-
st.info("Loading adapter...")
|
60 |
adapter_id = "saakshigupta/deepfake-explainer-1"
|
61 |
model = PeftModel.from_pretrained(model, adapter_id)
|
62 |
|
63 |
-
return model,
|
64 |
|
65 |
except Exception as e:
|
66 |
st.error(f"Error loading model: {str(e)}")
|
@@ -110,12 +106,12 @@ with st.sidebar:
|
|
110 |
|
111 |
# Load model button
|
112 |
if st.button("Load Model"):
|
113 |
-
with st.spinner("Loading model... this may take
|
114 |
try:
|
115 |
-
model,
|
116 |
-
if model is not None and
|
117 |
st.session_state['model'] = model
|
118 |
-
st.session_state['
|
119 |
st.success("Model loaded successfully!")
|
120 |
else:
|
121 |
st.error("Failed to load model.")
|
@@ -143,33 +139,20 @@ if uploaded_file is not None:
|
|
143 |
try:
|
144 |
# Get components from session state
|
145 |
model = st.session_state['model']
|
146 |
-
|
147 |
|
148 |
-
#
|
149 |
-
|
150 |
-
{"role": "user", "content": [
|
151 |
-
{"type": "image"},
|
152 |
-
{"type": "text", "text": custom_prompt}
|
153 |
-
]}
|
154 |
-
]
|
155 |
|
156 |
-
#
|
157 |
-
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
158 |
-
|
159 |
-
# Process with image
|
160 |
-
inputs = tokenizer(
|
161 |
-
image,
|
162 |
-
input_text,
|
163 |
-
add_special_tokens=False,
|
164 |
-
return_tensors="pt",
|
165 |
-
).to(model.device)
|
166 |
-
|
167 |
-
# Apply the cross-attention fix
|
168 |
fixed, inputs = fix_processor_outputs(inputs)
|
169 |
if fixed:
|
170 |
st.info("Fixed cross-attention mask dimensions")
|
171 |
|
172 |
-
#
|
|
|
|
|
|
|
173 |
with torch.no_grad():
|
174 |
output_ids = model.generate(
|
175 |
**inputs,
|
@@ -179,11 +162,11 @@ if uploaded_file is not None:
|
|
179 |
)
|
180 |
|
181 |
# Decode the output
|
182 |
-
response =
|
183 |
|
184 |
-
# Extract the
|
185 |
-
if
|
186 |
-
result = response.split(
|
187 |
else:
|
188 |
result = response
|
189 |
|
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
import gc
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
from peft import PeftModel
|
8 |
|
9 |
# Page config
|
10 |
st.set_page_config(
|
|
|
25 |
|
26 |
# Helper function to check CUDA
|
27 |
def init_device():
|
|
|
28 |
if torch.cuda.is_available():
|
29 |
st.sidebar.success("✓ GPU available: Using CUDA")
|
30 |
return "cuda"
|
|
|
37 |
|
38 |
@st.cache_resource
|
39 |
def load_model():
|
40 |
+
"""Load model without quantization"""
|
41 |
try:
|
42 |
+
# Using your original base model
|
43 |
+
base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
|
|
|
44 |
|
45 |
+
# Load processor
|
46 |
+
processor = AutoProcessor.from_pretrained(base_model_id)
|
47 |
|
48 |
+
# Load the model in half precision (float16) without 4-bit quantization
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
|
|
50 |
base_model_id,
|
51 |
+
device_map="auto",
|
52 |
+
torch_dtype=torch.float16 # Use float16 for memory efficiency
|
53 |
)
|
54 |
|
55 |
+
# Load adapter
|
|
|
|
|
|
|
|
|
56 |
adapter_id = "saakshigupta/deepfake-explainer-1"
|
57 |
model = PeftModel.from_pretrained(model, adapter_id)
|
58 |
|
59 |
+
return model, processor
|
60 |
|
61 |
except Exception as e:
|
62 |
st.error(f"Error loading model: {str(e)}")
|
|
|
106 |
|
107 |
# Load model button
|
108 |
if st.button("Load Model"):
|
109 |
+
with st.spinner("Loading model... this may take several minutes"):
|
110 |
try:
|
111 |
+
model, processor = load_model()
|
112 |
+
if model is not None and processor is not None:
|
113 |
st.session_state['model'] = model
|
114 |
+
st.session_state['processor'] = processor
|
115 |
st.success("Model loaded successfully!")
|
116 |
else:
|
117 |
st.error("Failed to load model.")
|
|
|
139 |
try:
|
140 |
# Get components from session state
|
141 |
model = st.session_state['model']
|
142 |
+
processor = st.session_state['processor']
|
143 |
|
144 |
+
# Process the image using the processor
|
145 |
+
inputs = processor(text=custom_prompt, images=image, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
# Fix cross-attention mask if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
fixed, inputs = fix_processor_outputs(inputs)
|
149 |
if fixed:
|
150 |
st.info("Fixed cross-attention mask dimensions")
|
151 |
|
152 |
+
# Move to device
|
153 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
154 |
+
|
155 |
+
# Generate the analysis
|
156 |
with torch.no_grad():
|
157 |
output_ids = model.generate(
|
158 |
**inputs,
|
|
|
162 |
)
|
163 |
|
164 |
# Decode the output
|
165 |
+
response = processor.decode(output_ids[0], skip_special_tokens=True)
|
166 |
|
167 |
+
# Extract the actual response (removing the prompt)
|
168 |
+
if custom_prompt in response:
|
169 |
+
result = response.split(custom_prompt)[-1].strip()
|
170 |
else:
|
171 |
result = response
|
172 |
|