Update app.py
Browse files
app.py
CHANGED
@@ -424,32 +424,32 @@ def process_image_with_gradcam(image, model, device, pred_class):
|
|
424 |
|
425 |
# ----- BLIP Image Captioning -----
|
426 |
|
427 |
-
# Define
|
428 |
-
ORIGINAL_IMAGE_PROMPT = "
|
|
|
429 |
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
-
# Function to generate image caption with structured formatting
|
433 |
def generate_image_caption(image, processor, model, is_gradcam=False, max_length=150, num_beams=5):
|
434 |
"""
|
435 |
Generate a caption for the input image using BLIP model and format it with structured headings
|
436 |
-
|
437 |
-
Args:
|
438 |
-
image (PIL.Image): Input image
|
439 |
-
processor: BLIP processor
|
440 |
-
model: BLIP model
|
441 |
-
is_gradcam (bool): Whether the image is a GradCAM visualization
|
442 |
-
max_length (int): Maximum length of the caption
|
443 |
-
num_beams (int): Number of beams for beam search
|
444 |
-
|
445 |
-
Returns:
|
446 |
-
str: Generated caption with structured formatting
|
447 |
"""
|
448 |
try:
|
449 |
# Select the appropriate prompt based on image type
|
450 |
prompt = GRADCAM_IMAGE_PROMPT if is_gradcam else ORIGINAL_IMAGE_PROMPT
|
451 |
|
452 |
-
# Preprocess the image
|
453 |
inputs = processor(image, text=prompt, return_tensors="pt")
|
454 |
|
455 |
# Check for available GPU
|
@@ -464,11 +464,7 @@ def generate_image_caption(image, processor, model, is_gradcam=False, max_length
|
|
464 |
# Decode the caption
|
465 |
raw_caption = processor.decode(output[0], skip_special_tokens=True)
|
466 |
|
467 |
-
#
|
468 |
-
if prompt in raw_caption:
|
469 |
-
raw_caption = raw_caption.replace(prompt, "").strip()
|
470 |
-
|
471 |
-
# Format the caption with proper structure based on type
|
472 |
if is_gradcam:
|
473 |
formatted_caption = format_gradcam_caption(raw_caption)
|
474 |
else:
|
@@ -481,17 +477,21 @@ def generate_image_caption(image, processor, model, is_gradcam=False, max_length
|
|
481 |
|
482 |
def format_image_caption(raw_caption):
|
483 |
"""Format a raw caption into a structured description with headings"""
|
484 |
-
|
|
|
|
|
|
|
|
|
485 |
structured_caption = f"""
|
486 |
-
**Subject**: The image shows a person
|
487 |
|
488 |
-
**Appearance**: {
|
489 |
|
490 |
-
**Background**: The background appears to be a
|
491 |
|
492 |
-
**Lighting**: The lighting appears to be professional with even illumination
|
493 |
|
494 |
-
**Colors**: The image contains
|
495 |
|
496 |
**Notable Elements**: The facial features and expression are the central focus of the image.
|
497 |
"""
|
@@ -499,32 +499,21 @@ def format_image_caption(raw_caption):
|
|
499 |
|
500 |
def format_gradcam_caption(raw_caption):
|
501 |
"""Format a raw GradCAM description with proper structure"""
|
|
|
502 |
# Basic structure for GradCAM analysis
|
503 |
structured_caption = f"""
|
504 |
-
**Main Focus Area**: The heatmap is primarily focused on the facial region.
|
505 |
|
506 |
-
**High Activation Regions**: The red/yellow areas highlight {raw_caption}
|
507 |
|
508 |
-
**Medium Activation Regions**: The green/cyan areas correspond to medium importance
|
509 |
|
510 |
-
**Low Activation Regions**: The blue/dark blue areas represent features that have less impact on the model's decision.
|
511 |
|
512 |
-
**Activation Pattern**: The overall pattern suggests the model is
|
513 |
"""
|
514 |
return structured_caption.strip()
|
515 |
|
516 |
-
# Function to load BLIP captioning model
|
517 |
-
@st.cache_resource
|
518 |
-
def load_blip_model():
|
519 |
-
with st.spinner("Loading BLIP captioning model..."):
|
520 |
-
try:
|
521 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
522 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
523 |
-
return processor, model
|
524 |
-
except Exception as e:
|
525 |
-
st.error(f"Error loading BLIP model: {str(e)}")
|
526 |
-
return None, None
|
527 |
-
|
528 |
# ----- Fine-tuned Vision LLM -----
|
529 |
|
530 |
# Function to fix cross-attention masks
|
|
|
424 |
|
425 |
# ----- BLIP Image Captioning -----
|
426 |
|
427 |
+
# Define simple prompts for BLIP
|
428 |
+
ORIGINAL_IMAGE_PROMPT = "" # Empty prompt for original images - BLIP works better with no prompt
|
429 |
+
GRADCAM_IMAGE_PROMPT = "Describe what you see in this heatmap visualization"
|
430 |
|
431 |
+
# Function to load BLIP captioning model
|
432 |
+
@st.cache_resource
|
433 |
+
def load_blip_model():
|
434 |
+
with st.spinner("Loading BLIP captioning model..."):
|
435 |
+
try:
|
436 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
437 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
438 |
+
return processor, model
|
439 |
+
except Exception as e:
|
440 |
+
st.error(f"Error loading BLIP model: {str(e)}")
|
441 |
+
return None, None
|
442 |
|
443 |
+
# Function to generate image caption with manual structured formatting
|
444 |
def generate_image_caption(image, processor, model, is_gradcam=False, max_length=150, num_beams=5):
|
445 |
"""
|
446 |
Generate a caption for the input image using BLIP model and format it with structured headings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
"""
|
448 |
try:
|
449 |
# Select the appropriate prompt based on image type
|
450 |
prompt = GRADCAM_IMAGE_PROMPT if is_gradcam else ORIGINAL_IMAGE_PROMPT
|
451 |
|
452 |
+
# Preprocess the image
|
453 |
inputs = processor(image, text=prompt, return_tensors="pt")
|
454 |
|
455 |
# Check for available GPU
|
|
|
464 |
# Decode the caption
|
465 |
raw_caption = processor.decode(output[0], skip_special_tokens=True)
|
466 |
|
467 |
+
# Format the caption into a structured format based on type
|
|
|
|
|
|
|
|
|
468 |
if is_gradcam:
|
469 |
formatted_caption = format_gradcam_caption(raw_caption)
|
470 |
else:
|
|
|
477 |
|
478 |
def format_image_caption(raw_caption):
|
479 |
"""Format a raw caption into a structured description with headings"""
|
480 |
+
|
481 |
+
# Try to extract some basic information from the raw caption
|
482 |
+
appearance_info = raw_caption # Use the full caption by default
|
483 |
+
|
484 |
+
# Basic structure for image caption with extracted information
|
485 |
structured_caption = f"""
|
486 |
+
**Subject**: The image shows a person in a portrait-style photograph.
|
487 |
|
488 |
+
**Appearance**: {appearance_info}
|
489 |
|
490 |
+
**Background**: The background appears to be a controlled environment.
|
491 |
|
492 |
+
**Lighting**: The lighting appears to be professional with even illumination.
|
493 |
|
494 |
+
**Colors**: The image contains natural skin tones and colors typical of portrait photography.
|
495 |
|
496 |
**Notable Elements**: The facial features and expression are the central focus of the image.
|
497 |
"""
|
|
|
499 |
|
500 |
def format_gradcam_caption(raw_caption):
|
501 |
"""Format a raw GradCAM description with proper structure"""
|
502 |
+
|
503 |
# Basic structure for GradCAM analysis
|
504 |
structured_caption = f"""
|
505 |
+
**Main Focus Area**: The heatmap is primarily focused on the facial region of the person.
|
506 |
|
507 |
+
**High Activation Regions**: The red/yellow areas highlight important features that the model is focusing on. {raw_caption}
|
508 |
|
509 |
+
**Medium Activation Regions**: The green/cyan areas correspond to regions of medium importance in the detection process, typically including parts of the face and surrounding areas.
|
510 |
|
511 |
+
**Low Activation Regions**: The blue/dark blue areas represent features that have less impact on the model's decision, usually the background and peripheral elements.
|
512 |
|
513 |
+
**Activation Pattern**: The overall pattern suggests the model is primarily analyzing facial features to make its determination of authenticity.
|
514 |
"""
|
515 |
return structured_caption.strip()
|
516 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
# ----- Fine-tuned Vision LLM -----
|
518 |
|
519 |
# Function to fix cross-attention masks
|