Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,71 @@ import tempfile
|
|
8 |
import os
|
9 |
|
10 |
# App title and description
|
11 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.title("Deepfake Image Analyzer")
|
13 |
-
st.markdown("Upload an image to analyze it for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Function to fix cross-attention masks
|
16 |
def fix_cross_attention_mask(inputs):
|
@@ -26,8 +88,11 @@ def fix_cross_attention_mask(inputs):
|
|
26 |
# Load model function
|
27 |
@st.cache_resource
|
28 |
def load_model():
|
29 |
-
with st.spinner("Loading model... This may take a
|
30 |
try:
|
|
|
|
|
|
|
31 |
# Load base model and tokenizer using Unsloth
|
32 |
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
|
33 |
model, tokenizer = FastVisionModel.from_pretrained(
|
@@ -48,12 +113,18 @@ def load_model():
|
|
48 |
return None, None
|
49 |
|
50 |
# Analyze image function
|
51 |
-
def analyze_image(image, question, model, tokenizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Format the message
|
53 |
messages = [
|
54 |
{"role": "user", "content": [
|
55 |
{"type": "image"},
|
56 |
-
{"type": "text", "text":
|
57 |
]}
|
58 |
]
|
59 |
|
@@ -72,13 +143,13 @@ def analyze_image(image, question, model, tokenizer):
|
|
72 |
inputs = fix_cross_attention_mask(inputs)
|
73 |
|
74 |
# Generate response
|
75 |
-
with st.spinner("Analyzing image... (this may take
|
76 |
with torch.no_grad():
|
77 |
output_ids = model.generate(
|
78 |
**inputs,
|
79 |
-
max_new_tokens=
|
80 |
use_cache=True,
|
81 |
-
temperature=
|
82 |
top_p=0.9
|
83 |
)
|
84 |
|
@@ -86,8 +157,8 @@ def analyze_image(image, question, model, tokenizer):
|
|
86 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
87 |
|
88 |
# Try to extract just the model's response (after the prompt)
|
89 |
-
if
|
90 |
-
result = response.split(
|
91 |
else:
|
92 |
result = response
|
93 |
|
@@ -95,34 +166,81 @@ def analyze_image(image, question, model, tokenizer):
|
|
95 |
|
96 |
# Main app
|
97 |
def main():
|
98 |
-
#
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
st.success("β
Model loaded successfully! You can now analyze images.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
#
|
105 |
-
st.
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# Analyze button
|
118 |
-
if st.button("Analyze Image"):
|
119 |
-
result = analyze_image(image, question, model, tokenizer)
|
120 |
|
121 |
# Display results
|
122 |
-
st.
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
main()
|
|
|
8 |
import os
|
9 |
|
10 |
# App title and description
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Deepfake Analyzer",
|
13 |
+
layout="wide",
|
14 |
+
page_icon="π"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Main title and description
|
18 |
st.title("Deepfake Image Analyzer")
|
19 |
+
st.markdown("Upload an image to analyze it for possible deepfake manipulation")
|
20 |
+
|
21 |
+
# Check for GPU availability
|
22 |
+
def check_gpu():
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
gpu_info = torch.cuda.get_device_properties(0)
|
25 |
+
st.sidebar.success(f"β
GPU available: {gpu_info.name} ({gpu_info.total_memory / (1024**3):.2f} GB)")
|
26 |
+
return True
|
27 |
+
else:
|
28 |
+
st.sidebar.warning("β οΈ No GPU detected. Analysis will be slower.")
|
29 |
+
return False
|
30 |
+
|
31 |
+
# Sidebar components
|
32 |
+
st.sidebar.title("Options")
|
33 |
+
|
34 |
+
# Temperature slider
|
35 |
+
temperature = st.sidebar.slider(
|
36 |
+
"Temperature",
|
37 |
+
min_value=0.1,
|
38 |
+
max_value=1.0,
|
39 |
+
value=0.7,
|
40 |
+
step=0.1,
|
41 |
+
help="Higher values make output more random, lower values more deterministic"
|
42 |
+
)
|
43 |
+
|
44 |
+
# Max response length slider
|
45 |
+
max_tokens = st.sidebar.slider(
|
46 |
+
"Maximum Response Length",
|
47 |
+
min_value=100,
|
48 |
+
max_value=1000,
|
49 |
+
value=500,
|
50 |
+
step=50,
|
51 |
+
help="The maximum number of tokens in the response"
|
52 |
+
)
|
53 |
+
|
54 |
+
# Custom instruction text area in sidebar
|
55 |
+
custom_instruction = st.sidebar.text_area(
|
56 |
+
"Custom Instructions (Advanced)",
|
57 |
+
value="Analyze for facial inconsistencies, lighting irregularities, mismatched shadows, and other signs of manipulation.",
|
58 |
+
help="Add specific instructions for the model"
|
59 |
+
)
|
60 |
+
|
61 |
+
# About section in sidebar
|
62 |
+
st.sidebar.markdown("---")
|
63 |
+
st.sidebar.subheader("About")
|
64 |
+
st.sidebar.markdown("""
|
65 |
+
This analyzer looks for:
|
66 |
+
- Facial inconsistencies
|
67 |
+
- Unnatural movements
|
68 |
+
- Lighting issues
|
69 |
+
- Texture anomalies
|
70 |
+
- Edge artifacts
|
71 |
+
- Blending problems
|
72 |
+
|
73 |
+
**Model**: Fine-tuned Llama 3.2 Vision
|
74 |
+
**Creator**: [Saakshi Gupta](https://huggingface.co/saakshigupta)
|
75 |
+
""")
|
76 |
|
77 |
# Function to fix cross-attention masks
|
78 |
def fix_cross_attention_mask(inputs):
|
|
|
88 |
# Load model function
|
89 |
@st.cache_resource
|
90 |
def load_model():
|
91 |
+
with st.spinner("Loading model... This may take a few minutes. Please be patient..."):
|
92 |
try:
|
93 |
+
# Check for GPU
|
94 |
+
has_gpu = check_gpu()
|
95 |
+
|
96 |
# Load base model and tokenizer using Unsloth
|
97 |
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
|
98 |
model, tokenizer = FastVisionModel.from_pretrained(
|
|
|
113 |
return None, None
|
114 |
|
115 |
# Analyze image function
|
116 |
+
def analyze_image(image, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
117 |
+
# Combine question with custom instruction if provided
|
118 |
+
if custom_instruction.strip():
|
119 |
+
full_prompt = f"{question}\n\nAdditional instructions: {custom_instruction}"
|
120 |
+
else:
|
121 |
+
full_prompt = question
|
122 |
+
|
123 |
# Format the message
|
124 |
messages = [
|
125 |
{"role": "user", "content": [
|
126 |
{"type": "image"},
|
127 |
+
{"type": "text", "text": full_prompt}
|
128 |
]}
|
129 |
]
|
130 |
|
|
|
143 |
inputs = fix_cross_attention_mask(inputs)
|
144 |
|
145 |
# Generate response
|
146 |
+
with st.spinner("Analyzing image... (this may take 15-30 seconds)"):
|
147 |
with torch.no_grad():
|
148 |
output_ids = model.generate(
|
149 |
**inputs,
|
150 |
+
max_new_tokens=max_tokens,
|
151 |
use_cache=True,
|
152 |
+
temperature=temperature,
|
153 |
top_p=0.9
|
154 |
)
|
155 |
|
|
|
157 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
158 |
|
159 |
# Try to extract just the model's response (after the prompt)
|
160 |
+
if full_prompt in response:
|
161 |
+
result = response.split(full_prompt)[-1].strip()
|
162 |
else:
|
163 |
result = response
|
164 |
|
|
|
166 |
|
167 |
# Main app
|
168 |
def main():
|
169 |
+
# Create a button to load the model
|
170 |
+
if 'model_loaded' not in st.session_state:
|
171 |
+
st.session_state.model_loaded = False
|
172 |
+
st.session_state.model = None
|
173 |
+
st.session_state.tokenizer = None
|
174 |
|
175 |
+
# Load model button
|
176 |
+
if not st.session_state.model_loaded:
|
177 |
+
if st.button("π₯ Load Deepfake Analysis Model", type="primary"):
|
178 |
+
model, tokenizer = load_model()
|
179 |
+
if model is not None and tokenizer is not None:
|
180 |
+
st.session_state.model = model
|
181 |
+
st.session_state.tokenizer = tokenizer
|
182 |
+
st.session_state.model_loaded = True
|
183 |
+
st.success("β
Model loaded successfully! You can now analyze images.")
|
184 |
+
else:
|
185 |
+
st.error("β Failed to load model. Please check the logs for errors.")
|
186 |
+
else:
|
187 |
st.success("β
Model loaded successfully! You can now analyze images.")
|
188 |
+
|
189 |
+
# Image upload section
|
190 |
+
st.subheader("Upload an Image")
|
191 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
192 |
+
|
193 |
+
# Default question with option to customize
|
194 |
+
default_question = "Analyze this image and tell me if it's a deepfake. Provide both technical and non-technical explanations."
|
195 |
+
question = st.text_area("Question/Prompt:", value=default_question, height=100)
|
196 |
+
|
197 |
+
if uploaded_file is not None:
|
198 |
+
# Display the uploaded image
|
199 |
+
image = Image.open(uploaded_file).convert("RGB")
|
200 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
201 |
|
202 |
+
# Analyze button - only enabled if model is loaded
|
203 |
+
if st.session_state.model_loaded:
|
204 |
+
if st.button("π Analyze Image", type="primary"):
|
205 |
+
result = analyze_image(
|
206 |
+
image,
|
207 |
+
question,
|
208 |
+
st.session_state.model,
|
209 |
+
st.session_state.tokenizer,
|
210 |
+
temperature=temperature,
|
211 |
+
max_tokens=max_tokens,
|
212 |
+
custom_instruction=custom_instruction
|
213 |
+
)
|
|
|
|
|
|
|
|
|
214 |
|
215 |
# Display results
|
216 |
+
st.success("β
Analysis complete!")
|
217 |
+
|
218 |
+
# Check if the result contains both technical and non-technical explanations
|
219 |
+
if "Technical" in result and "Non-Technical" in result:
|
220 |
+
# Split the result into technical and non-technical sections
|
221 |
+
parts = result.split("Non-Technical")
|
222 |
+
technical = parts[0]
|
223 |
+
non_technical = "Non-Technical" + parts[1]
|
224 |
+
|
225 |
+
# Display in two columns
|
226 |
+
col1, col2 = st.columns(2)
|
227 |
+
with col1:
|
228 |
+
st.subheader("Technical Analysis")
|
229 |
+
st.markdown(technical)
|
230 |
+
|
231 |
+
with col2:
|
232 |
+
st.subheader("Simple Explanation")
|
233 |
+
st.markdown(non_technical)
|
234 |
+
else:
|
235 |
+
# Just display the whole result
|
236 |
+
st.subheader("Analysis Result")
|
237 |
+
st.markdown(result)
|
238 |
+
else:
|
239 |
+
st.warning("β οΈ Please load the model first before analyzing images.")
|
240 |
+
|
241 |
+
# Footer
|
242 |
+
st.markdown("---")
|
243 |
+
st.caption("Deepfake Image Analyzer")
|
244 |
|
245 |
if __name__ == "__main__":
|
246 |
main()
|