File size: 1,268 Bytes
5c0e14a
 
 
 
69b2fee
5c0e14a
 
 
 
 
 
 
 
 
 
 
 
c73295d
5c0e14a
 
0ef4d3d
c73295d
0ef4d3d
 
5c0e14a
89180ff
5c0e14a
 
 
 
 
 
 
 
 
 
 
 
 
17fba42
 
 
 
 
 
 
 
4010b81
8549fec
 
0ef4d3d
8549fec
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.2"
)


def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.9, max_new_tokens=16000, top_p=0.95, repetition_penalty=1.0,
):
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=16000,
        top_p=0.9,
        repetition_penalty=1.0,
        do_sample=True,
        stop_sequence = ".",
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
    gr.ChatInterface(
        generate
    )

demo.queue().launch(debug=True)