sachin6624's picture
Upload 3 files
40d1897 verified
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
new_model = tf.keras.models.load_model("./MobileNet-V2-Cats-Dogs.keras")
def image_classifier(inp):
# Convert PIL image to TensorFlow tensor
img = tf.convert_to_tensor(inp, dtype=tf.float32)
# Resize the image
img = tf.image.resize(img, (160,160))
out = new_model.predict(tf.expand_dims(img,0)).flatten()
predictions = tf.where(out < 0.5, 0, 1)
predictions = tf.squeeze(predictions)
print("The out : ", out[0])
if out[0] > 0.5 :
return {'dog': 1}
else:
return {'cat': 1}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
demo.launch(debug=True)