File size: 10,977 Bytes
9ebf5e3 f24ece6 9ebf5e3 f24ece6 9ebf5e3 f24ece6 9ebf5e3 019296d 9ebf5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
from google import genai
import nemo.collections.asr as nemo_asr
from pydub import AudioSegment
import os
from huggingface_hub import login
from hazm import Normalizer
import numpy as np
import re
# Fetch API Keys from environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set. Please provide a valid Hugging Face token.")
if not GEMINI_API_KEY:
raise ValueError("GEMINI_API_KEY environment variable not set. Please provide a valid GEMINI_API_KEY.")
# Authenticate with Hugging Face
login(HF_TOKEN)
# Load the NeMo ASR Model
try:
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
model_name="faimlab/stt_fa_fastconformer_hybrid_large_dataset_v30"
)
except Exception as e:
raise RuntimeError(f"Failed to load model: {str(e)}")
# Persian text normalizer
normalizer = Normalizer()
# Function to load audio
def load_audio(audio_path):
audio = AudioSegment.from_file(audio_path)
audio = audio.set_channels(1).set_frame_rate(16000)
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
audio_samples /= np.max(np.abs(audio_samples))
return audio_samples, audio.frame_rate
# Transcribe audio chunk
def transcribe_chunk(audio_chunk, model):
transcription = model.transcribe([audio_chunk], batch_size=1, verbose=False)
return transcription[0].text
# Transcribe the full audio file
def transcribe_audio(file_path, model, chunk_size=30*16000):
waveform, _ = load_audio(file_path)
transcriptions = []
for start in range(0, len(waveform), chunk_size):
end = min(len(waveform), start + chunk_size)
transcription = transcribe_chunk(waveform[start:end], model)
transcriptions.append(transcription)
transcriptions = ' '.join(transcriptions)
transcriptions = re.sub(' +', ' ', transcriptions)
transcriptions = normalizer.normalize(transcriptions)
return transcriptions
# Main transcription function
def transcribe(audio):
if audio is None:
return "Please upload an audio file.", gr.update(interactive=False), gr.update(interactive=False)
transcription = transcribe_audio(audio, asr_model)
# Enable summarize & translate buttons once transcription is done
return transcription
# List of 100 languages for summarization
languages = [
"English", "Persian", "French", "Spanish", "German", "Italian", "Portuguese", "Dutch", "Swedish", "Danish",
"Finnish", "Norwegian", "Russian", "Polish", "Turkish", "Arabic", "Hindi", "Chinese", "Japanese", "Korean",
"Thai", "Vietnamese", "Indonesian", "Hebrew", "Greek", "Czech", "Hungarian", "Romanian", "Bulgarian", "Serbian",
"Croatian", "Slovak", "Slovenian", "Ukrainian", "Lithuanian", "Latvian", "Estonian", "Macedonian", "Albanian",
"Basque", "Catalan", "Maltese", "Icelandic", "Georgian", "Armenian", "Belarusian", "Yiddish", "Pashto", "Urdu",
"Bengali", "Punjabi", "Tamil", "Telugu", "Malayalam", "Sinhala", "Burmese", "Lao", "Khmer", "Mongolian",
"Nepali", "Marathi", "Gujarati", "Kannada", "Odia", "Assamese", "Maithili", "Kurdish", "Azerbaijani", "Kazakh",
"Uzbek", "Turkmen", "Tajik", "Kyrgyz", "Uighur", "Tatar", "Haitian Creole", "Swahili", "Hausa", "Yoruba",
"Zulu", "Xhosa", "Amharic", "Somali", "Tigrinya", "Shona", "Igbo", "Malagasy", "Quechua", "Aymara", "Guarani",
"Sundanese", "Javanese", "Filipino", "Hmong", "Fijian", "Tongan", "Samoan", "Chamorro", "Hawaiian"
]
languages = sorted(languages)
# List of available AI models
model_selections = [
'gemini-2.0-flash',
'gemini-2.0-pro-exp-02-05',
'gemini-2.0-flash-lite'
]
def translate(text, target_language, model_sel):
client = genai.Client(api_key=GEMINI_API_KEY)
prompt = f"Translate the following text into {target_language}. Only reply with the translation.\n'{text}'."
response = client.models.generate_content(
model=model_sel,
contents=[prompt]
)
return response.text
# Function to summarize transcribed text
def summarize(transcript_text, word_count, model_sel, lang_sel):
client = genai.Client(api_key=GEMINI_API_KEY)
prompt = f"Summarize the following text in {word_count} words in {lang_sel}: '{transcript_text}'."
response = client.models.generate_content(
model=model_sel,
contents=[prompt]
)
return response.text
def punctuate(transcript_text, model_sel):
client = genai.Client(api_key=GEMINI_API_KEY)
prompt = f"""
Task: Punctuate the given Persian transcript text from an ASR model accurately according to Persian punctuation rules. Do not change any characters, correct mistakes, or modify the text in any way. You are ONLY allowed to add appropriate punctuations.
Guidelines:
1. Period (نقطه .)
Ends a sentence.
Used after abbreviations (e.g., آی.ب.ام.).
2. Comma (ویرگول ,)
Separates words/phrases in a list.
Used in compound or conditional sentences.
Prevents ambiguity (e.g., شلنگ مخصوص، آتشنشانی).
Surrounds parenthetical phrases (e.g., استیو جابز، بنیانگذار اپل،…).
Distinguishes adverbs (e.g., بعد از چندین ماه، ورزش کردم).
Separates repeated words (e.g., آن کشور، کشور خوبی است).
3. Semicolon (نقطهویرگول ؛)
Connects related sentences when a full stop is too strong.
Separates clauses in complex lists (e.g., آلمان، ایتالیا و ژاپن؛ انگلیس، شوروی و آمریکا).
Used before explanatory phrases (e.g., فتوسنتز مهم است؛ یعنی…).
4. Colon (دونقطه :)
Introduces explanations, lists, or direct quotes (e.g., او گفت: «من آمادهام.»).
5. Ellipsis (سهنقطه …)
Indicates omitted words (e.g., فرهنگی، سیاسی، اجتماعی و …).
6. Parentheses (پرانتز ())
Encloses extra information, dates, or clarifications (e.g., جنگ جهانی دوم (۱۹۴۵)).
7. Quotation Marks (گیومه «»)
Encloses direct speech (e.g., او گفت: «سلام!»).
Highlights specific words (e.g., او را «نابغه» خواندند).
8. Question Mark (علامت سؤال ؟)
Ends direct questions (e.g., آیا آمدی؟).
9. Exclamation Mark (علامت تعجب !)
Expresses surprise, emphasis, or commands (e.g., چه پرنده زیبایی!).
Instructions:
Apply these punctuation rules without modifying the original text.
Do not correct typos, spelling, or grammar mistakes.
Only return the punctuated text as output—no explanations or additional comments.
Input:
{transcript_text}
"""
response = client.models.generate_content(
model=model_sel,
contents=[prompt]
)
return response.text
# Gradio Interface
with gr.Blocks(theme="huggingface") as demo:
gr.Markdown(
"""
# 📝 Persian ASR, Translation & Summarization
Welcome to the **Persian Speech-to-Text & NLP** platform! This app allows you to upload an audio file,
get an accurate **transcription**, and enhance the output with **translation**, **summarization**,
and **punctuation restoration**.
## 🎯 How It Works
1️⃣ Upload an **audio file** containing Persian speech. To transcribe YouTube videos, open this [Colab Notebook](https://colab.research.google.com/github/saeedzou/NeMo-Gradio/blob/main/yt_transcribe_gradio.ipynb) (If your request was detected as bot, disconnect and run all cells again).
2️⃣ Click **"Transcribe"** to generate the text output.
3️⃣ Use additional features: **Translate**, **Summarize**, or **Restore Punctuation**.
4️⃣ Customize settings: Select a **language**, **AI model**, and **summary length**.
5️⃣ View and copy the processed text for your use!
"""
)
with gr.Row():
audio_input = gr.Audio(type="filepath", label="🎵 Upload Audio File")
transcript_output = gr.Textbox(label="📝 Transcription", interactive=True)
translation_output = gr.Textbox(label="🌍 Translation", interactive=False)
summarized_output = gr.Textbox(label="📖 Summarized Text", interactive=False)
transcribe_button = gr.Button("🎙️ Transcribe")
translate_button = gr.Button("🌐 Translate", interactive=True)
summarize_button = gr.Button("✂️ Summarize", interactive=True)
punctuate_button = gr.Button("🔤 Restore Punctuation", interactive=True)
with gr.Row():
word_count_input = gr.Number(value=50, label="📏 Word Count for Summary")
lang_selection = gr.Dropdown(choices=languages, value="English", label="🌎 Select Language")
model_selection = gr.Dropdown(choices=model_selections, value="gemini-2.0-flash", label="🤖 Select AI Model")
# Button Click Actions
transcribe_button.click(
transcribe,
inputs=audio_input,
outputs=transcript_output
)
translate_button.click(
translate,
inputs=[transcript_output, lang_selection, model_selection],
outputs=translation_output
)
summarize_button.click(
summarize,
inputs=[transcript_output, word_count_input, model_selection, lang_selection],
outputs=summarized_output
)
punctuate_button.click(
punctuate,
inputs=[transcript_output, model_selection],
outputs=transcript_output
)
gr.Markdown(
"""
\n\n
---
Powered by NVIDIA’s **NeMo Fast Conformer**, this tool is optimized for high-quality **Persian ASR (Automatic Speech Recognition)**.
**📚 Trained on 800+ Hours of Speech Data:**
- Common Voice 17 (~300 hours)
- YouTube (~400 hours)
- NasleMana (~90 hours)
- In-house dataset (~70 hours)
---
## 📜 License & Business Inquiries
This application is licensed under **Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0)**.
- **🛑 Non-Commercial Use Only** – Commercial use is not permitted without prior approval.
- **🔗 Attribution Required** – Credit must be given to FAIM Group, Sharif University of Technology.
- **❌ No Derivatives** – Modifications or adaptations of this work are not allowed.
📜 Full License Details: [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/)
📩 **Business Inquiries:**
If you're interested in commercial applications, please contact us at:
✉️ **Email:** [[email protected]](mailto:[email protected])
---
"""
)
# Launch Gradio app
demo.launch() |