Update main.py
Browse files
main.py
CHANGED
@@ -1,67 +1,67 @@
|
|
1 |
-
# main.py
|
2 |
-
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
import numpy as np
|
6 |
-
from pydub import AudioSegment
|
7 |
-
from fastapi import FastAPI, UploadFile, File
|
8 |
-
from fastapi.responses import JSONResponse
|
9 |
-
from huggingface_hub import login
|
10 |
-
from hazm import Normalizer
|
11 |
-
import nemo.collections.asr as nemo_asr
|
12 |
-
import uvicorn
|
13 |
-
|
14 |
-
# Load Hugging Face token
|
15 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
-
if not HF_TOKEN:
|
17 |
-
raise ValueError("HF_TOKEN environment variable not set. Please provide a valid Hugging Face token.")
|
18 |
-
|
19 |
-
login(HF_TOKEN)
|
20 |
-
|
21 |
-
# Load model once
|
22 |
-
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("
|
23 |
-
|
24 |
-
normalizer = Normalizer()
|
25 |
-
app = FastAPI()
|
26 |
-
|
27 |
-
|
28 |
-
def load_audio(audio_file_path):
|
29 |
-
audio = AudioSegment.from_file(audio_file_path)
|
30 |
-
audio = audio.set_channels(1).set_frame_rate(16000)
|
31 |
-
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
|
32 |
-
audio_samples /= np.max(np.abs(audio_samples))
|
33 |
-
return audio_samples, audio.frame_rate
|
34 |
-
|
35 |
-
|
36 |
-
def transcribe_chunk(audio_chunk, model):
|
37 |
-
transcription = model.transcribe([audio_chunk], batch_size=1, verbose=False)
|
38 |
-
return transcription[0].text
|
39 |
-
|
40 |
-
|
41 |
-
def transcribe_audio(file_path, model, chunk_size=30 * 16000):
|
42 |
-
waveform, _ = load_audio(file_path)
|
43 |
-
transcriptions = []
|
44 |
-
for start in range(0, len(waveform), chunk_size):
|
45 |
-
end = min(len(waveform), start + chunk_size)
|
46 |
-
transcription = transcribe_chunk(waveform[start:end], model)
|
47 |
-
transcriptions.append(transcription)
|
48 |
-
|
49 |
-
final_transcription = ' '.join(transcriptions)
|
50 |
-
final_transcription = re.sub(' +', ' ', final_transcription)
|
51 |
-
final_transcription = normalizer.normalize(final_transcription)
|
52 |
-
|
53 |
-
return final_transcription
|
54 |
-
|
55 |
-
|
56 |
-
@app.post("/transcribe")
|
57 |
-
async def transcribe(file: UploadFile = File(...)):
|
58 |
-
try:
|
59 |
-
temp_path = f"/tmp/{file.filename}"
|
60 |
-
with open(temp_path, "wb") as f:
|
61 |
-
f.write(await file.read())
|
62 |
-
|
63 |
-
result = transcribe_audio(temp_path, asr_model)
|
64 |
-
return {"transcription": result}
|
65 |
-
except Exception as e:
|
66 |
-
return JSONResponse(status_code=500, content={"error": str(e)})
|
67 |
-
|
|
|
1 |
+
# main.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import numpy as np
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from fastapi import FastAPI, UploadFile, File
|
8 |
+
from fastapi.responses import JSONResponse
|
9 |
+
from huggingface_hub import login
|
10 |
+
from hazm import Normalizer
|
11 |
+
import nemo.collections.asr as nemo_asr
|
12 |
+
import uvicorn
|
13 |
+
|
14 |
+
# Load Hugging Face token
|
15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
if not HF_TOKEN:
|
17 |
+
raise ValueError("HF_TOKEN environment variable not set. Please provide a valid Hugging Face token.")
|
18 |
+
|
19 |
+
login(HF_TOKEN)
|
20 |
+
|
21 |
+
# Load model once
|
22 |
+
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("faimlab/stt_fa_fastconformer_hybrid_large_dataset_v30")
|
23 |
+
|
24 |
+
normalizer = Normalizer()
|
25 |
+
app = FastAPI()
|
26 |
+
|
27 |
+
|
28 |
+
def load_audio(audio_file_path):
|
29 |
+
audio = AudioSegment.from_file(audio_file_path)
|
30 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
31 |
+
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
|
32 |
+
audio_samples /= np.max(np.abs(audio_samples))
|
33 |
+
return audio_samples, audio.frame_rate
|
34 |
+
|
35 |
+
|
36 |
+
def transcribe_chunk(audio_chunk, model):
|
37 |
+
transcription = model.transcribe([audio_chunk], batch_size=1, verbose=False)
|
38 |
+
return transcription[0].text
|
39 |
+
|
40 |
+
|
41 |
+
def transcribe_audio(file_path, model, chunk_size=30 * 16000):
|
42 |
+
waveform, _ = load_audio(file_path)
|
43 |
+
transcriptions = []
|
44 |
+
for start in range(0, len(waveform), chunk_size):
|
45 |
+
end = min(len(waveform), start + chunk_size)
|
46 |
+
transcription = transcribe_chunk(waveform[start:end], model)
|
47 |
+
transcriptions.append(transcription)
|
48 |
+
|
49 |
+
final_transcription = ' '.join(transcriptions)
|
50 |
+
final_transcription = re.sub(' +', ' ', final_transcription)
|
51 |
+
final_transcription = normalizer.normalize(final_transcription)
|
52 |
+
|
53 |
+
return final_transcription
|
54 |
+
|
55 |
+
|
56 |
+
@app.post("/transcribe")
|
57 |
+
async def transcribe(file: UploadFile = File(...)):
|
58 |
+
try:
|
59 |
+
temp_path = f"/tmp/{file.filename}"
|
60 |
+
with open(temp_path, "wb") as f:
|
61 |
+
f.write(await file.read())
|
62 |
+
|
63 |
+
result = transcribe_audio(temp_path, asr_model)
|
64 |
+
return {"transcription": result}
|
65 |
+
except Exception as e:
|
66 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|
67 |
+
|