safinal's picture
Update app.py
ca23554 verified
raw
history blame
5.91 kB
import gradio as gr
import torch
import numpy as np
from PIL import Image
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
from token_classifier import load_token_classifier, predict
from model import Model
from dataset import RetrievalDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 512
import zipfile
import os
def unzip_file(zip_path, extract_path):
# Create the target directory if it doesn't exist
os.makedirs(extract_path, exist_ok=True)
# Open the zip file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
# Extract all contents to the specified directory
zip_ref.extractall(extract_path)
# Example usage
zip_path = "sample_evaluation.zip"
extract_path = "sample_evaluation"
unzip_file(zip_path, extract_path)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="safinal/compositional-retrieval", filename="weights.pth", local_dir='.')
def encode_database(model, df: pd.DataFrame) -> np.ndarray :
"""
Process database images and generate embeddings.
Args:
df (pd. DataFrame ): DataFrame with column:
- target_image: str, paths to database images
Returns:
np.ndarray: Embeddings array (num_images, embedding_dim)
"""
model.eval()
all_embeddings = []
for i in tqdm(range(0, len(df), batch_size)):
target_imgs = torch.stack([model.processor(Image.open(target_image_path)) for target_image_path in df['target_image'][i:i+batch_size]]).to(device)
with torch.no_grad():
# target_imgs_embedding = model.encode_database_image(target_imgs)
target_imgs_embedding = model.feature_extractor.encode_image(target_imgs)
target_imgs_embedding = torch.nn.functional.normalize(target_imgs_embedding, dim=1, p=2)
all_embeddings.append(target_imgs_embedding.detach().cpu().numpy())
return np.concatenate(all_embeddings)
# Load model and configurations
def load_model():
model = Model(model_name="ViTamin-L-384", pretrained=None)
model.load("weights.pth")
model.eval()
return model
def process_single_query(model, query_image_path, query_text, database_embeddings, database_df):
# Process query image
query_img = model.processor(Image.open(query_image_path)).unsqueeze(0).to(device)
# Get token classifier
token_classifier, token_classifier_tokenizer = load_token_classifier(
"trained_distil_bert_base",
device
)
with torch.no_grad():
query_img_embd = model.feature_extractor.encode_image(query_img)
# Process text query
predictions = predict(
tokens=query_text,
model=token_classifier,
tokenizer=token_classifier_tokenizer,
device=device,
max_length=128
)
# Process positive and negative objects
pos = []
neg = []
last_tag = ''
for token, label in predictions:
if label == '<positive_object>':
if last_tag != '<positive_object>':
pos.append(f"a photo of a {token}.")
else:
pos[-1] = pos[-1][:-1] + f" {token}."
elif label == '<negative_object>':
if last_tag != '<negative_object>':
neg.append(f"a photo of a {token}.")
else:
neg[-1] = neg[-1][:-1] + f" {token}."
last_tag = label
# Combine embeddings
for obj in pos:
query_img_embd += model.feature_extractor.encode_text(
model.tokenizer(obj).to(device)
)[0]
for obj in neg:
query_img_embd -= model.feature_extractor.encode_text(
model.tokenizer(obj).to(device)
)[0]
query_img_embd = torch.nn.functional.normalize(query_img_embd, dim=1, p=2)
# Calculate similarities
query_embedding = query_img_embd.cpu().numpy()
similarities = cosine_similarity(query_embedding, database_embeddings)[0]
# Get most similar image
most_similar_idx = np.argmax(similarities)
most_similar_image_path = database_df.iloc[most_similar_idx]['target_image']
return most_similar_image_path
# Initialize model and database
model = load_model()
test_dataset = RetrievalDataset(
img_dir_path="sample_evaluation/images",
annotations_file_path="sample_evaluation/data.csv",
split='test',
transform=model.processor,
tokenizer=model.tokenizer
)
database_embeddings = encode_database(model, test_dataset.load_database()) # Using your existing function
def interface_fn(selected_image, query_text):
result_image_path = process_single_query(
model,
selected_image,
query_text,
database_embeddings,
test_dataset.load_database()
)
return Image.open(result_image_path)
# Create Gradio interface
demo = gr.Interface(
fn=interface_fn,
inputs=[
gr.Image(type="filepath", label="Select Query Image"),
gr.Textbox(label="Enter Query Text")
],
outputs=gr.Image(label="Retrieved Image"),
title="Compositional Image Retrieval",
description="Select an image and enter a text query to find the most similar image.",
examples=[
["sample_evaluation/images/261684.png", "Bring cow into the picture, and then follow up with removing bench."],
["sample_evaluation/images/283700.png", "add bowl and bench and remove shoe and elephant"],
["sample_evaluation/images/455007.png", "Discard chair in the beginning, then proceed to bring car into play."],
["sample_evaluation/images/612311.png", "Get rid of train initially, and then follow up by including snowboard."]
]
)
if __name__ == "__main__":
demo.launch()