safinal's picture
Update app.py
ffd2453 verified
raw
history blame
3.97 kB
import gradio as gr
import torch
import numpy as np
from PIL import Image
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from token_classifier import load_token_classifier, predict
from model import Model
from dataset import RetrievalDataset
from generate_embeds import encode_database
# Load model and configurations
def load_model():
model = Model(model_name="ViTamin-L-384", pretrained=None)
model.load("weights.pth")
model.eval()
return model
def process_single_query(model, query_image_path, query_text, database_embeddings, database_df):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Process query image
query_img = model.processor(Image.open(query_image_path)).unsqueeze(0).to(device)
# Get token classifier
token_classifier, token_classifier_tokenizer = load_token_classifier(
"trained_distil_bert_base",
device
)
with torch.no_grad():
query_img_embd = model.feature_extractor.encode_image(query_img)
# Process text query
predictions = predict(
tokens=query_text,
model=token_classifier,
tokenizer=token_classifier_tokenizer,
device=device,
max_length=128
)
# Process positive and negative objects
pos = []
neg = []
last_tag = ''
for token, label in predictions:
if label == '<positive_object>':
if last_tag != '<positive_object>':
pos.append(f"a photo of a {token}.")
else:
pos[-1] = pos[-1][:-1] + f" {token}."
elif label == '<negative_object>':
if last_tag != '<negative_object>':
neg.append(f"a photo of a {token}.")
else:
neg[-1] = neg[-1][:-1] + f" {token}."
last_tag = label
# Combine embeddings
for obj in pos:
query_img_embd += model.feature_extractor.encode_text(
model.tokenizer(obj).to(device)
)[0]
for obj in neg:
query_img_embd -= model.feature_extractor.encode_text(
model.tokenizer(obj).to(device)
)[0]
query_img_embd = torch.nn.functional.normalize(query_img_embd, dim=1, p=2)
# Calculate similarities
query_embedding = query_img_embd.cpu().numpy()
similarities = cosine_similarity(query_embedding, database_embeddings)[0]
# Get most similar image
most_similar_idx = np.argmax(similarities)
most_similar_image_path = database_df.iloc[most_similar_idx]['target_image']
return most_similar_image_path
# Initialize model and database
model = load_model()
test_dataset = RetrievalDataset(
img_dir_path="sample_evaluation/images",
annotations_file_path="sample_evaluation/data.csv",
split='test',
transform=model.processor,
tokenizer=model.tokenizer
)
database_embeddings = encode_database(model, test_dataset.load_database()) # Using your existing function
def interface_fn(selected_image, query_text):
result_image_path = process_single_query(
model,
selected_image,
query_text,
database_embeddings,
test_dataset.load_database()
)
return Image.open(result_image_path)
# Create Gradio interface
demo = gr.Interface(
fn=interface_fn,
inputs=[
gr.Image(type="filepath", label="Select Query Image"),
gr.Textbox(label="Enter Query Text")
],
outputs=gr.Image(label="Retrieved Image"),
title="Compositional Image Retrieval",
description="Select an image and enter a text query to find the most similar image.",
examples=[
["example_images/image1.jpg", "a red car"],
["example_images/image2.jpg", "a blue house"]
]
)
if __name__ == "__main__":
demo.launch()