Spaces:
Runtime error
Runtime error
Create token_classifier.py
Browse files- token_classifier.py +118 -0
token_classifier.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import DistilBertTokenizerFast, DistilBertForTokenClassification
|
3 |
+
|
4 |
+
|
5 |
+
# Define label mappings (ensure this matches the mappings used during training)
|
6 |
+
label2id = {'<negative_object>': 0, 'other': 2, '<positive_object>': 1}
|
7 |
+
id2label = {v: k for k, v in label2id.items()}
|
8 |
+
|
9 |
+
def prepare_input(tokens, tokenizer, max_length=128):
|
10 |
+
encoding = tokenizer(
|
11 |
+
tokens,
|
12 |
+
is_split_into_words=True,
|
13 |
+
return_tensors="pt",
|
14 |
+
padding='max_length',
|
15 |
+
truncation=True,
|
16 |
+
max_length=max_length,
|
17 |
+
return_offsets_mapping=True
|
18 |
+
)
|
19 |
+
return encoding
|
20 |
+
|
21 |
+
|
22 |
+
def split_sentence(sentence):
|
23 |
+
# List of special tokens to preserve
|
24 |
+
special_tokens = ['<positive_object>', '<negative_object>']
|
25 |
+
|
26 |
+
# More comprehensive list of punctuation marks and symbols
|
27 |
+
punctuation = ',.?!;:()[]{}""\'`@#$%^&*+=|\\/<>-ββ'
|
28 |
+
|
29 |
+
# Initialize result list and temporary word
|
30 |
+
result = []
|
31 |
+
current_word = ''
|
32 |
+
i = 0
|
33 |
+
|
34 |
+
while i < len(sentence):
|
35 |
+
# Check for special tokens
|
36 |
+
found_special = False
|
37 |
+
for token in special_tokens:
|
38 |
+
if sentence[i:].startswith(token):
|
39 |
+
# Add previous word if exists
|
40 |
+
if current_word:
|
41 |
+
result.append(current_word)
|
42 |
+
current_word = ''
|
43 |
+
# Add special token
|
44 |
+
result.append(token)
|
45 |
+
i += len(token)
|
46 |
+
found_special = True
|
47 |
+
break
|
48 |
+
|
49 |
+
if found_special:
|
50 |
+
continue
|
51 |
+
|
52 |
+
# Handle punctuation
|
53 |
+
if sentence[i] in punctuation:
|
54 |
+
# Add previous word if exists
|
55 |
+
if current_word:
|
56 |
+
result.append(current_word)
|
57 |
+
current_word = ''
|
58 |
+
# Add punctuation as separate token
|
59 |
+
result.append(sentence[i])
|
60 |
+
|
61 |
+
# Handle spaces
|
62 |
+
elif sentence[i].isspace():
|
63 |
+
if current_word:
|
64 |
+
result.append(current_word)
|
65 |
+
current_word = ''
|
66 |
+
|
67 |
+
# Build regular words
|
68 |
+
else:
|
69 |
+
current_word += sentence[i]
|
70 |
+
|
71 |
+
i += 1
|
72 |
+
|
73 |
+
# Add final word if exists
|
74 |
+
if current_word:
|
75 |
+
result.append(current_word)
|
76 |
+
|
77 |
+
return result
|
78 |
+
|
79 |
+
def predict(tokens, model, tokenizer, device, max_length=128):
|
80 |
+
tokens = split_sentence(' '.join(tokens.lower().split()))
|
81 |
+
|
82 |
+
# Prepare the input
|
83 |
+
encoding = prepare_input(tokens, tokenizer, max_length=max_length)
|
84 |
+
word_ids = encoding.word_ids(batch_index=0) # List of word IDs
|
85 |
+
|
86 |
+
# Move tensors to device
|
87 |
+
input_ids = encoding['input_ids'].to(device)
|
88 |
+
attention_mask = encoding['attention_mask'].to(device)
|
89 |
+
|
90 |
+
# Inference
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
93 |
+
|
94 |
+
logits = outputs.logits
|
95 |
+
predictions = torch.argmax(logits, dim=-1).cpu().numpy()[0]
|
96 |
+
|
97 |
+
# Decode tokens and labels
|
98 |
+
tokens_decoded = tokenizer.convert_ids_to_tokens(input_ids.cpu().numpy()[0])
|
99 |
+
labels = [id2label.get(pred, 'O') for pred in predictions]
|
100 |
+
|
101 |
+
# Align tokens with original word-level tokens
|
102 |
+
aligned_predictions = []
|
103 |
+
previous_word_idx = None
|
104 |
+
for token, label, word_idx in zip(tokens_decoded, labels, word_ids):
|
105 |
+
if word_idx is None:
|
106 |
+
continue
|
107 |
+
if word_idx != previous_word_idx:
|
108 |
+
aligned_predictions.append((tokens[word_idx], label))
|
109 |
+
previous_word_idx = word_idx
|
110 |
+
return aligned_predictions
|
111 |
+
|
112 |
+
|
113 |
+
def load_token_classifier(pretrained_token_classifier_path, device):
|
114 |
+
# Load tokenizer and model
|
115 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(pretrained_token_classifier_path)
|
116 |
+
token_classifier = DistilBertForTokenClassification.from_pretrained(pretrained_token_classifier_path)
|
117 |
+
token_classifier.to(device)
|
118 |
+
return token_classifier, tokenizer
|