|
import streamlite as st |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
chatbot_model = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(chatbot_model) |
|
model = AutoModelForCausalLM.from_pretrained(chatbot_model) |
|
|
|
|
|
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") |
|
|
|
st.title("🧠 Mental Health Chatbot") |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
|
|
user_input = st.text_input("You:", key="user_input") |
|
|
|
if st.button("Send"): |
|
if user_input: |
|
|
|
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
|
|
emotion_result = emotion_pipeline(user_input) |
|
emotion = emotion_result[0]["label"] |
|
|
|
|
|
st.session_state.chat_history.append(("You", user_input)) |
|
st.session_state.chat_history.append(("Bot", response)) |
|
|
|
|
|
for sender, msg in st.session_state.chat_history: |
|
st.write(f"**{sender}:** {msg}") |
|
|
|
|
|
st.write(f"🧠 **Emotion Detected:** {emotion}") |
|
|