|
import gradio as gr |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
print("Loading DialoGPT model...") |
|
chatbot_model = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(chatbot_model) |
|
model = AutoModelForCausalLM.from_pretrained(chatbot_model) |
|
|
|
|
|
print("Loading emotion detection model...") |
|
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") |
|
|
|
|
|
chat_histories = {} |
|
|
|
def chatbot_response(message, history=None, session_id="default"): |
|
"""Generate a chatbot response and detect emotion from user message""" |
|
|
|
if session_id not in chat_histories: |
|
chat_histories[session_id] = [] |
|
|
|
|
|
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
|
|
emotion_result = emotion_pipeline(message) |
|
emotion = emotion_result[0]["label"] |
|
score = float(emotion_result[0]["score"]) |
|
|
|
|
|
chat_histories[session_id].append((message, response)) |
|
|
|
return response, emotion, score, chat_histories[session_id] |
|
|
|
def api_chatbot_response(message, session_id="default"): |
|
"""API endpoint version that returns a structured response""" |
|
response, emotion, score, _ = chatbot_response(message, None, session_id) |
|
|
|
return { |
|
"bot_response": response, |
|
"emotion": emotion, |
|
"emotion_score": score, |
|
"session_id": session_id |
|
} |
|
|
|
def get_chat_history(session_id="default"): |
|
"""Get chat history for a specific session""" |
|
if session_id in chat_histories: |
|
return chat_histories[session_id] |
|
return [] |
|
|
|
def clear_history(session_id="default"): |
|
"""Clear chat history for a specific session""" |
|
if session_id in chat_histories: |
|
chat_histories[session_id] = [] |
|
return f"History cleared for session {session_id}" |
|
return f"Session {session_id} not found" |
|
|
|
|
|
with gr.Blocks(title="Mental Health Chatbot") as ui_interface: |
|
gr.Markdown("# 🧠 Mental Health Chatbot") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(height=400, label="Conversation") |
|
|
|
with gr.Row(): |
|
message = gr.Textbox(placeholder="Type your message here...", label="You", show_label=False) |
|
submit_btn = gr.Button("Send") |
|
|
|
with gr.Row(): |
|
session_id = gr.Textbox(value="default", label="Session ID") |
|
clear_btn = gr.Button("Clear Chat") |
|
|
|
with gr.Column(scale=1): |
|
emotion_label = gr.Textbox(label="Emotion Detected") |
|
emotion_score = gr.Number(label="Confidence Score") |
|
|
|
|
|
def respond(message, chat_history, session_id): |
|
response, emotion, score, _ = chatbot_response(message, chat_history, session_id) |
|
chat_history.append((message, response)) |
|
return "", chat_history, emotion, score |
|
|
|
submit_btn.click( |
|
respond, |
|
[message, chatbot, session_id], |
|
[message, chatbot, emotion_label, emotion_score] |
|
) |
|
|
|
message.submit( |
|
respond, |
|
[message, chatbot, session_id], |
|
[message, chatbot, emotion_label, emotion_score] |
|
) |
|
|
|
clear_btn.click( |
|
lambda s: ([], clear_history(s), "", 0), |
|
[session_id], |
|
[chatbot, emotion_label, emotion_score] |
|
) |
|
|
|
|
|
api_interface = gr.Interface( |
|
fn=api_chatbot_response, |
|
inputs=[ |
|
gr.Textbox(label="Message"), |
|
gr.Textbox(label="Session ID", value="default") |
|
], |
|
outputs=gr.JSON(label="Response"), |
|
title="Mental Health Chatbot API", |
|
description="Send a message to get chatbot response with emotion analysis", |
|
examples=[ |
|
["I'm feeling sad today", "user1"], |
|
["I'm so excited about my new job!", "user2"], |
|
["I'm worried about my exam tomorrow", "user3"] |
|
] |
|
) |
|
|
|
history_api = gr.Interface( |
|
fn=get_chat_history, |
|
inputs=gr.Textbox(label="Session ID", value="default"), |
|
outputs=gr.JSON(label="Chat History"), |
|
title="Chat History API", |
|
description="Get chat history for a specific session" |
|
) |
|
|
|
clear_api = gr.Interface( |
|
fn=clear_history, |
|
inputs=gr.Textbox(label="Session ID", value="default"), |
|
outputs=gr.Textbox(label="Result"), |
|
title="Clear History API", |
|
description="Clear chat history for a specific session" |
|
) |
|
|
|
|
|
demo = gr.TabbedInterface( |
|
[ui_interface, api_interface, history_api, clear_api], |
|
["Chat UI", "Chat API", "History API", "Clear API"] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |