Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from transformers import pipeline
|
4 |
-
import torch
|
5 |
from fastapi import FastAPI, Request
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
-
import
|
|
|
|
|
8 |
|
9 |
-
# Initialize FastAPI
|
10 |
-
app = FastAPI(
|
|
|
|
|
11 |
|
12 |
-
# Add CORS middleware
|
13 |
app.add_middleware(
|
14 |
CORSMiddleware,
|
15 |
allow_origins=["*"], # In production, restrict this to your app's domain
|
@@ -19,101 +19,82 @@ app.add_middleware(
|
|
19 |
)
|
20 |
|
21 |
# Load chatbot model
|
22 |
-
print("Loading
|
23 |
chatbot_model = "microsoft/DialoGPT-medium"
|
24 |
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
|
25 |
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
26 |
|
27 |
# Load emotion detection model
|
28 |
print("Loading emotion detection model...")
|
29 |
-
emotion_pipeline = pipeline(
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
response, emotion, score = generate_response(user_input, session_id)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return {
|
49 |
"response": response,
|
50 |
"emotion": emotion,
|
51 |
-
"
|
52 |
"session_id": session_id
|
53 |
}
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
if session_id not in
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
bot_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
62 |
-
|
63 |
-
# Append user input to chat history
|
64 |
-
chat_history[session_id].append(bot_input_ids)
|
65 |
-
|
66 |
-
# Generate a response
|
67 |
-
with torch.no_grad():
|
68 |
-
chat_history_ids = model.generate(
|
69 |
-
bot_input_ids,
|
70 |
-
max_length=200,
|
71 |
-
pad_token_id=tokenizer.eos_token_id,
|
72 |
-
no_repeat_ngram_size=3,
|
73 |
-
do_sample=True,
|
74 |
-
top_k=50,
|
75 |
-
top_p=0.95,
|
76 |
-
temperature=0.7
|
77 |
-
)
|
78 |
-
|
79 |
-
# Decode the response
|
80 |
-
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
81 |
-
|
82 |
-
# Detect emotion
|
83 |
-
try:
|
84 |
-
emotion_result = emotion_pipeline(user_input)[0]
|
85 |
-
emotion = emotion_result["label"]
|
86 |
-
score = emotion_result["score"]
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error detecting emotion: {e}")
|
89 |
-
emotion = "unknown"
|
90 |
-
score = 0.0
|
91 |
-
|
92 |
-
return response, emotion, score
|
93 |
-
|
94 |
-
# Gradio Interface
|
95 |
-
def gradio_generate(user_input):
|
96 |
-
response, emotion, score = generate_response(user_input)
|
97 |
-
return response, emotion, f"{score:.4f}"
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
gr.Textbox(label="Emotion Score")
|
107 |
-
],
|
108 |
-
title="Mental Health Chatbot",
|
109 |
-
description="A simple mental health chatbot with emotion detection",
|
110 |
-
allow_flagging="never"
|
111 |
-
)
|
112 |
-
|
113 |
-
# Mount the Gradio app to FastAPI
|
114 |
-
app = gr.mount_gradio_app(app, iface, path="/")
|
115 |
|
116 |
-
#
|
117 |
if __name__ == "__main__":
|
118 |
import uvicorn
|
119 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import uuid
|
6 |
|
7 |
+
# Initialize FastAPI app
|
8 |
+
app = FastAPI(title="Mental Health Chatbot API",
|
9 |
+
description="API for mental health chatbot with emotion detection",
|
10 |
+
version="1.0.0")
|
11 |
|
12 |
+
# Add CORS middleware
|
13 |
app.add_middleware(
|
14 |
CORSMiddleware,
|
15 |
allow_origins=["*"], # In production, restrict this to your app's domain
|
|
|
19 |
)
|
20 |
|
21 |
# Load chatbot model
|
22 |
+
print("Loading DialoGPT model...")
|
23 |
chatbot_model = "microsoft/DialoGPT-medium"
|
24 |
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
|
25 |
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
26 |
|
27 |
# Load emotion detection model
|
28 |
print("Loading emotion detection model...")
|
29 |
+
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
30 |
+
|
31 |
+
# Store chat histories by session ID
|
32 |
+
chat_histories = {}
|
33 |
+
|
34 |
+
# Request models
|
35 |
+
class ChatRequest(BaseModel):
|
36 |
+
message: str
|
37 |
+
session_id: str = None
|
38 |
|
39 |
+
class ChatResponse(BaseModel):
|
40 |
+
response: str
|
41 |
+
emotion: str
|
42 |
+
emotion_score: float
|
43 |
+
session_id: str
|
44 |
|
45 |
+
@app.get("/")
|
46 |
+
async def root():
|
47 |
+
return {"message": "Mental Health Chatbot API is running. Use /api/chat to interact with the chatbot."}
|
48 |
+
|
49 |
+
@app.post("/api/chat", response_model=ChatResponse)
|
50 |
+
async def chat(request: ChatRequest):
|
51 |
+
# Create a new session ID if not provided
|
52 |
+
session_id = request.session_id if request.session_id else str(uuid.uuid4())
|
53 |
+
|
54 |
+
# Initialize chat history for new sessions
|
55 |
+
if session_id not in chat_histories:
|
56 |
+
chat_histories[session_id] = []
|
57 |
|
58 |
+
user_input = request.message
|
|
|
59 |
|
60 |
+
# Generate chatbot response
|
61 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
62 |
+
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
63 |
+
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
64 |
+
|
65 |
+
# Detect emotion
|
66 |
+
emotion_result = emotion_pipeline(user_input)[0]
|
67 |
+
emotion = emotion_result["label"]
|
68 |
+
score = emotion_result["score"]
|
69 |
+
|
70 |
+
# Store chat history
|
71 |
+
chat_histories[session_id].append({"role": "user", "content": user_input})
|
72 |
+
chat_histories[session_id].append({"role": "bot", "content": response})
|
73 |
+
|
74 |
+
# Return the response
|
75 |
return {
|
76 |
"response": response,
|
77 |
"emotion": emotion,
|
78 |
+
"emotion_score": float(score),
|
79 |
"session_id": session_id
|
80 |
}
|
81 |
|
82 |
+
@app.get("/api/history/{session_id}")
|
83 |
+
async def get_chat_history(session_id: str):
|
84 |
+
if session_id not in chat_histories:
|
85 |
+
return {"error": "Session not found"}
|
86 |
|
87 |
+
return {"session_id": session_id, "history": chat_histories[session_id]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
@app.delete("/api/history/{session_id}")
|
90 |
+
async def clear_chat_history(session_id: str):
|
91 |
+
if session_id in chat_histories:
|
92 |
+
chat_histories.pop(session_id)
|
93 |
+
return {"message": f"Chat history for session {session_id} cleared"}
|
94 |
+
|
95 |
+
return {"error": "Session not found"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Launch the API server
|
98 |
if __name__ == "__main__":
|
99 |
import uvicorn
|
100 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|