Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
import json
|
| 4 |
|
| 5 |
# Load models
|
| 6 |
chatbot_model = "microsoft/DialoGPT-medium"
|
|
@@ -14,22 +13,22 @@ chat_histories = {}
|
|
| 14 |
def chatbot_response(message, session_id="default"):
|
| 15 |
if session_id not in chat_histories:
|
| 16 |
chat_histories[session_id] = []
|
| 17 |
-
|
| 18 |
# Generate response
|
| 19 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
| 20 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
| 21 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 22 |
-
|
| 23 |
# Detect emotion
|
| 24 |
emotion_result = emotion_pipeline(message)
|
| 25 |
emotion = emotion_result[0]["label"]
|
| 26 |
score = float(emotion_result[0]["score"])
|
| 27 |
-
|
| 28 |
# Store history
|
| 29 |
chat_histories[session_id].append((message, response))
|
| 30 |
return response, emotion, score
|
| 31 |
|
| 32 |
-
#
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
gr.Markdown("# π€ Mental Health Chatbot")
|
| 35 |
with gr.Row():
|
|
@@ -50,10 +49,17 @@ with gr.Blocks() as demo:
|
|
| 50 |
|
| 51 |
btn.click(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
| 52 |
msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
| 53 |
-
clear_btn.click(lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0),
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 3 |
|
| 4 |
# Load models
|
| 5 |
chatbot_model = "microsoft/DialoGPT-medium"
|
|
|
|
| 13 |
def chatbot_response(message, session_id="default"):
|
| 14 |
if session_id not in chat_histories:
|
| 15 |
chat_histories[session_id] = []
|
| 16 |
+
|
| 17 |
# Generate response
|
| 18 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
| 19 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
| 20 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 21 |
+
|
| 22 |
# Detect emotion
|
| 23 |
emotion_result = emotion_pipeline(message)
|
| 24 |
emotion = emotion_result[0]["label"]
|
| 25 |
score = float(emotion_result[0]["score"])
|
| 26 |
+
|
| 27 |
# Store history
|
| 28 |
chat_histories[session_id].append((message, response))
|
| 29 |
return response, emotion, score
|
| 30 |
|
| 31 |
+
# ------------------ Web Interface ------------------
|
| 32 |
with gr.Blocks() as demo:
|
| 33 |
gr.Markdown("# π€ Mental Health Chatbot")
|
| 34 |
with gr.Row():
|
|
|
|
| 49 |
|
| 50 |
btn.click(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
| 51 |
msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
| 52 |
+
clear_btn.click(lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0),
|
| 53 |
+
inputs=[session_id],
|
| 54 |
+
outputs=[chatbot, emotion_out, score_out])
|
| 55 |
+
|
| 56 |
+
# ------------------ API Endpoint for /api/predict ------------------
|
| 57 |
+
predict_api = gr.Interface(
|
| 58 |
+
fn=chatbot_response,
|
| 59 |
+
inputs=[gr.Textbox(label="Message"), gr.Textbox(label="Session ID")],
|
| 60 |
+
outputs=[gr.Textbox(label="Response"), gr.Textbox(label="Emotion"), gr.Number(label="Score")]
|
| 61 |
+
)
|
| 62 |
|
| 63 |
+
# ------------------ Launch for Gradio Spaces ------------------
|
| 64 |
+
demo.launch()
|
| 65 |
+
predict_api.launch(inline=False)
|