Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load chatbot model
|
@@ -9,78 +9,20 @@ model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
|
9 |
# Load emotion detection model
|
10 |
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
25 |
-
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
26 |
-
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
27 |
-
|
28 |
-
# Detect emotion
|
29 |
-
emotion_result = emotion_pipeline(user_input)
|
30 |
-
emotion = emotion_result[0]["label"]
|
31 |
-
|
32 |
-
# Store chat history
|
33 |
-
st.session_state.chat_history.append(("You", user_input))
|
34 |
-
st.session_state.chat_history.append(("Bot", response))
|
35 |
-
|
36 |
-
# Display chat
|
37 |
-
for sender, msg in st.session_state.chat_history:
|
38 |
-
st.write(f"**{sender}:** {msg}")
|
39 |
-
|
40 |
-
# Display emotion
|
41 |
-
st.write(f"π§ **Emotion Detected:** {emotion}")
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
# import streamlit as st
|
46 |
-
# from transformers import pipeline, AutoTokenizer
|
47 |
-
|
48 |
-
# # β
Load Emotion Recognition Model
|
49 |
-
# emotion_pipeline = pipeline("text-classification", model="ahmettasdemir/distilbert-base-uncased-finetuned-emotion")
|
50 |
-
|
51 |
-
# # β
Load Stress Detection Model
|
52 |
-
# stress_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
53 |
-
|
54 |
-
# # β
Load Mental Disorder Detection Model
|
55 |
-
# mental_bert_pipeline = pipeline("text-classification", model="nlpconnect/vit-gpt2-image-captioning")
|
56 |
-
|
57 |
-
# # β
Load PHQ-9 Depression Severity Classifier
|
58 |
-
# phq9_pipeline = pipeline("text-classification", model="PHQ-9 Depression Classifier")
|
59 |
-
|
60 |
-
# # β
Load Chatbot Model (DeepSeek)
|
61 |
-
# deepseek_model = "deepseek-ai/deepseek-llm-7b"
|
62 |
-
# deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model)
|
63 |
-
# deepseek_pipeline = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
|
64 |
-
|
65 |
-
# # π₯ Streamlit UI
|
66 |
-
# st.title("π§ Mental Health Assistant Bot")
|
67 |
-
|
68 |
-
# user_input = st.text_input("How are you feeling today?", "")
|
69 |
-
|
70 |
-
# if st.button("Submit"):
|
71 |
-
# if user_input:
|
72 |
-
# # β
Emotion Analysis
|
73 |
-
# emotion_result = emotion_pipeline(user_input)[0]
|
74 |
-
# st.write(f"**Emotion Detected:** {emotion_result['label']} ({emotion_result['score']:.2f})")
|
75 |
-
|
76 |
-
# # β
Stress Level Analysis
|
77 |
-
# stress_result = stress_pipeline(user_input)[0]
|
78 |
-
# st.write(f"**Stress Level:** {stress_result['label']} ({stress_result['score']:.2f})")
|
79 |
-
|
80 |
-
# # β
Mental Health Condition Detection
|
81 |
-
# mental_health_result = mental_bert_pipeline(user_input)[0]
|
82 |
-
# st.write(f"**Possible Mental Health Condition:** {mental_health_result['label']} ({mental_health_result['score']:.2f})")
|
83 |
-
|
84 |
-
# # β
AI Chatbot Response
|
85 |
-
# deepseek_response = deepseek_pipeline(user_input, max_length=100, do_sample=True)[0]['generated_text']
|
86 |
-
# st.write(f"π€ **Chatbot:** {deepseek_response}")
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load chatbot model
|
|
|
9 |
# Load emotion detection model
|
10 |
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
11 |
|
12 |
+
# Function to generate chatbot response and emotion analysis
|
13 |
+
def generate_response(user_input):
|
14 |
+
# Generate chatbot response
|
15 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
16 |
+
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
17 |
+
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
18 |
|
19 |
+
# Detect emotion
|
20 |
+
emotion_result = emotion_pipeline(user_input)
|
21 |
+
emotion = emotion_result[0]["label"]
|
22 |
|
23 |
+
# Return chatbot response and detected emotion
|
24 |
+
return response, f"Emotion Detected: {emotion}"
|
25 |
|
26 |
+
# Gradio interface setup
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|