Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,87 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# User Input
|
| 19 |
-
user_input = st.text_input("
|
| 20 |
|
| 21 |
-
if st.button("
|
| 22 |
if user_input:
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
# Display emotion
|
| 41 |
-
st.write(f"π§ **Emotion Detected:** {emotion}")
|
|
|
|
| 1 |
+
# import streamlit as st
|
| 2 |
+
# from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# # Load chatbot model
|
| 5 |
+
# chatbot_model = "microsoft/DialoGPT-medium"
|
| 6 |
+
# tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
|
| 7 |
+
# model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
| 8 |
+
|
| 9 |
+
# # Load emotion detection model
|
| 10 |
+
# emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
| 11 |
+
|
| 12 |
+
# st.title("π§ Mental Health Chatbot")
|
| 13 |
+
|
| 14 |
+
# # Chat history
|
| 15 |
+
# if "chat_history" not in st.session_state:
|
| 16 |
+
# st.session_state.chat_history = []
|
| 17 |
+
|
| 18 |
+
# # User Input
|
| 19 |
+
# user_input = st.text_input("You:", key="user_input")
|
| 20 |
+
|
| 21 |
+
# if st.button("Send"):
|
| 22 |
+
# if user_input:
|
| 23 |
+
# # Generate chatbot response
|
| 24 |
+
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
| 25 |
+
# output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
| 26 |
+
# response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 27 |
+
|
| 28 |
+
# # Detect emotion
|
| 29 |
+
# emotion_result = emotion_pipeline(user_input)
|
| 30 |
+
# emotion = emotion_result[0]["label"]
|
| 31 |
|
| 32 |
+
# # Store chat history
|
| 33 |
+
# st.session_state.chat_history.append(("You", user_input))
|
| 34 |
+
# st.session_state.chat_history.append(("Bot", response))
|
|
|
|
| 35 |
|
| 36 |
+
# # Display chat
|
| 37 |
+
# for sender, msg in st.session_state.chat_history:
|
| 38 |
+
# st.write(f"**{sender}:** {msg}")
|
| 39 |
|
| 40 |
+
# # Display emotion
|
| 41 |
+
# st.write(f"π§ **Emotion Detected:** {emotion}")
|
| 42 |
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
import streamlit as st
|
| 46 |
+
|
| 47 |
+
st.title("π§ Mental Health Assistant Bot")
|
| 48 |
|
| 49 |
# User Input
|
| 50 |
+
user_input = st.text_input("How are you feeling today?", "")
|
| 51 |
|
| 52 |
+
if st.button("Submit"):
|
| 53 |
if user_input:
|
| 54 |
+
# Get Emotion Analysis
|
| 55 |
+
emotion_result = emotion_pipeline(user_input)[0]
|
| 56 |
+
st.write(f"**Emotion Detected:** {emotion_result['label']} ({emotion_result['score']:.2f})")
|
| 57 |
+
|
| 58 |
+
# Get Mental Health Condition Analysis
|
| 59 |
+
mental_health_result = mental_bert_pipeline(user_input)[0]
|
| 60 |
+
st.write(f"**Possible Mental Health Condition:** {mental_health_result['label']} ({mental_health_result['score']:.2f})")
|
| 61 |
+
|
| 62 |
+
# Get Stress Level Analysis
|
| 63 |
+
stress_result = stress_pipeline(user_input)[0]
|
| 64 |
+
st.write(f"**Stress Level:** {stress_result['label']} ({stress_result['score']:.2f})")
|
| 65 |
+
|
| 66 |
+
# Chatbot Response using DeepSeek AI
|
| 67 |
+
deepseek_response = deepseek_pipeline(user_input, max_length=100, do_sample=True)[0]['generated_text']
|
| 68 |
+
st.write(f"π€ **Chatbot:** {deepseek_response}")
|
| 69 |
+
|
| 70 |
+
# Question Answering Section
|
| 71 |
+
st.subheader("Ask Mental Health Questions")
|
| 72 |
+
user_question = st.text_input("Ask me anything about mental health:", "")
|
| 73 |
|
| 74 |
+
if st.button("Ask"):
|
| 75 |
+
if user_question:
|
| 76 |
+
answer = qa_pipeline(question=user_question, context="Mental health is important for overall well-being.")
|
| 77 |
+
st.write(f"**Answer:** {answer['answer']}")
|
| 78 |
|
| 79 |
+
# PHQ-9 Depression Assessment
|
| 80 |
+
st.subheader("Depression Severity Assessment (PHQ-9)")
|
| 81 |
+
phq9_question = st.text_input("Describe your mood over the last two weeks:", "")
|
| 82 |
|
| 83 |
+
if st.button("Analyze Depression Level"):
|
| 84 |
+
if phq9_question:
|
| 85 |
+
phq9_result = phq9_pipeline(phq9_question)[0]
|
| 86 |
+
st.write(f"**PHQ-9 Score Suggests:** {phq9_result['label']} ({phq9_result['score']:.2f})")
|
| 87 |
|
|
|
|
|
|