Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from fastapi import FastAPI, Request
|
4 |
-
import uvicorn
|
5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
6 |
-
|
7 |
-
# Create FastAPI app
|
8 |
-
app = FastAPI()
|
9 |
-
|
10 |
-
# Add CORS middleware to allow requests from your React Native app
|
11 |
-
app.add_middleware(
|
12 |
-
CORSMiddleware,
|
13 |
-
allow_origins=["*"], # In production, specify your actual domain
|
14 |
-
allow_credentials=True,
|
15 |
-
allow_methods=["*"],
|
16 |
-
allow_headers=["*"],
|
17 |
-
)
|
18 |
|
19 |
# Load chatbot model
|
20 |
chatbot_model = "microsoft/DialoGPT-medium"
|
@@ -33,38 +18,20 @@ def generate_response(user_input):
|
|
33 |
# Detect emotion
|
34 |
emotion_result = emotion_pipeline(user_input)
|
35 |
emotion = emotion_result[0]["label"]
|
|
|
36 |
|
37 |
-
return response, emotion
|
38 |
-
|
39 |
-
# Create API endpoint
|
40 |
-
@app.post("/analyze")
|
41 |
-
async def analyze_text(request: Request):
|
42 |
-
data = await request.json()
|
43 |
-
user_input = data.get("text", "")
|
44 |
-
|
45 |
-
if not user_input:
|
46 |
-
return {"error": "No text provided"}
|
47 |
-
|
48 |
-
response, emotion = generate_response(user_input)
|
49 |
-
|
50 |
-
# Return structured response
|
51 |
-
return {
|
52 |
-
"response": response,
|
53 |
-
"emotion": emotion,
|
54 |
-
"score": emotion_pipeline(user_input)[0]["score"]
|
55 |
-
}
|
56 |
|
57 |
-
#
|
58 |
iface = gr.Interface(
|
59 |
fn=generate_response,
|
60 |
inputs=gr.Textbox(label="Enter your message"),
|
61 |
-
outputs=[
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
|
66 |
-
app = gr.mount_gradio_app(app, iface, path="/")
|
67 |
-
|
68 |
-
# Only needed if running directly
|
69 |
-
if __name__ == "__main__":
|
70 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load chatbot model
|
5 |
chatbot_model = "microsoft/DialoGPT-medium"
|
|
|
18 |
# Detect emotion
|
19 |
emotion_result = emotion_pipeline(user_input)
|
20 |
emotion = emotion_result[0]["label"]
|
21 |
+
score = emotion_result[0]["score"]
|
22 |
|
23 |
+
return response, emotion, score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Gradio Interface
|
26 |
iface = gr.Interface(
|
27 |
fn=generate_response,
|
28 |
inputs=gr.Textbox(label="Enter your message"),
|
29 |
+
outputs=[
|
30 |
+
gr.Textbox(label="Chatbot Response"),
|
31 |
+
gr.Textbox(label="Emotion Detected"),
|
32 |
+
gr.Textbox(label="Emotion Score")
|
33 |
+
],
|
34 |
+
live=False
|
35 |
)
|
36 |
|
37 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|