import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer from fastapi import FastAPI import json # Load chatbot model print("Loading DialoGPT model...") chatbot_model = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(chatbot_model) model = AutoModelForCausalLM.from_pretrained(chatbot_model) # Load emotion detection model print("Loading emotion detection model...") emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # Store chat histories chat_histories = {} def chatbot_response(message, history=None, session_id="default"): """Generate a chatbot response and detect emotion from user message""" # Initialize session if it doesn't exist if session_id not in chat_histories: chat_histories[session_id] = [] # Generate chatbot response input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt") output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # Detect emotion emotion_result = emotion_pipeline(message) emotion = emotion_result[0]["label"] score = float(emotion_result[0]["score"]) # Store in chat history chat_histories[session_id].append((message, response)) return response, emotion, score, chat_histories[session_id] def api_chatbot_response(message: str, session_id: str = "default"): """API endpoint version that returns a structured response""" response, emotion, score, _ = chatbot_response(message, None, session_id) return { "bot_response": response, "emotion": emotion, "emotion_score": score, "session_id": session_id } def get_chat_history(session_id: str = "default"): """Get chat history for a specific session""" if session_id in chat_histories: return chat_histories[session_id] return [] def clear_history(session_id: str = "default"): """Clear chat history for a specific session""" if session_id in chat_histories: chat_histories[session_id] = [] return {"status": "success", "message": f"History cleared for session {session_id}"} return {"status": "error", "message": f"Session {session_id} not found"} # Create FastAPI app app = FastAPI() # Create Gradio app with gr.Blocks() as gradio_interface: gr.Markdown("# API Documentation") gr.Markdown("Use these endpoints in your React Native app:") with gr.Accordion("Chat Endpoint"): gr.Markdown(""" **POST /chat** - Parameters: `message`, `session_id` (optional) - Returns: JSON with bot_response, emotion, emotion_score, session_id """) with gr.Accordion("History Endpoint"): gr.Markdown(""" **GET /history** - Parameters: `session_id` (optional) - Returns: JSON array of message/response pairs """) with gr.Accordion("Clear History Endpoint"): gr.Markdown(""" **POST /clear_history** - Parameters: `session_id` (optional) - Returns: JSON with status and message """) # Mount Gradio interface gradio_app = gr.mount_gradio_app(app, gradio_interface, path="/") # Add API endpoints @app.post("/chat") async def chat_endpoint(message: str, session_id: str = "default"): return api_chatbot_response(message, session_id) @app.get("/history") async def history_endpoint(session_id: str = "default"): return get_chat_history(session_id) @app.post("/clear_history") async def clear_endpoint(session_id: str = "default"): return clear_history(session_id) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)