safwansajad's picture
Update app.py
4bbe9fc verified
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import gradio as gr
# Load the tokenizer and model from Hugging Face
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
# Ensure the model doesn't generate any special tokens like <pad>
tokenizer.pad_token = tokenizer.eos_token
def chat(message, history):
# Prepare the conversation history
full_prompt = ""
for user, bot in history:
full_prompt += f"User: {user}\nBot: {bot}\n"
full_prompt += f"User: {message}\nBot:"
# Tokenize the input and generate a response
inputs = tokenizer(full_prompt, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new reply
reply = reply.split("Bot:")[-1].strip()
return reply
# Set up the Gradio interface
gr.ChatInterface(fn=chat, title="Simple Chatbot with DistilGPT-2").launch()