sagar004 commited on
Commit
7c3910c
·
verified ·
1 Parent(s): bc1422a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
  import pandas as pd
@@ -6,6 +7,10 @@ from sklearn.linear_model import LinearRegression
6
  from io import StringIO
7
  from gradio.themes.base import Base
8
  from gradio.themes.utils import colors, fonts
 
 
 
 
9
 
10
  # Custom theme
11
  custom_theme = Base(
@@ -16,7 +21,11 @@ custom_theme = Base(
16
  # Load IBM Granite model
17
  model_name = "ibm-granite/granite-3.3-2b-instruct"
18
  tokenizer = AutoTokenizer.from_pretrained(model_name)
19
- model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")
 
 
 
 
20
  llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
21
 
22
  # Module 1: Policy Summarization
@@ -28,7 +37,7 @@ def policy_summarizer_v2(text, file):
28
  else:
29
  return "⚠️ Please upload a file or paste some text."
30
  prompt = f"Summarize the following city policy in simple terms:\n{content}\nSummary:"
31
- result = llm(prompt, max_new_tokens=200)[0]["generated_text"]
32
  return result.replace(prompt, "").strip()
33
 
34
  # Module 2: Citizen Feedback
@@ -66,7 +75,7 @@ def detect_anomaly(csv_file):
66
  # Module 6: Chat Assistant
67
  def chat_assistant(question):
68
  prompt = f"Answer this smart city sustainability question:\n\nQ: {question}\nA:"
69
- result = llm(prompt, max_new_tokens=200, temperature=0.7)[0]["generated_text"]
70
  return result.replace(prompt, "").strip()
71
 
72
  # Gradio App UI
@@ -115,4 +124,4 @@ with gr.Blocks(theme=custom_theme) as app:
115
  chat_btn = gr.Button("Ask")
116
  chat_btn.click(chat_assistant, inputs=chat_input, outputs=chat_output)
117
 
118
- app.launch()
 
1
+
2
  import gradio as gr
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
  import pandas as pd
 
7
  from io import StringIO
8
  from gradio.themes.base import Base
9
  from gradio.themes.utils import colors, fonts
10
+ import torch
11
+
12
+ # GPU Check (Optional Debug Info)
13
+ print("✅ Model loading... GPU available:", torch.cuda.is_available())
14
 
15
  # Custom theme
16
  custom_theme = Base(
 
21
  # Load IBM Granite model
22
  model_name = "ibm-granite/granite-3.3-2b-instruct"
23
  tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ model_name,
26
+ device_map="auto",
27
+ torch_dtype=torch.float16 # Faster inference on GPU
28
+ )
29
  llm = pipeline("text-generation", model=model, tokenizer=tokenizer)
30
 
31
  # Module 1: Policy Summarization
 
37
  else:
38
  return "⚠️ Please upload a file or paste some text."
39
  prompt = f"Summarize the following city policy in simple terms:\n{content}\nSummary:"
40
+ result = llm(prompt, max_new_tokens=100)[0]["generated_text"]
41
  return result.replace(prompt, "").strip()
42
 
43
  # Module 2: Citizen Feedback
 
75
  # Module 6: Chat Assistant
76
  def chat_assistant(question):
77
  prompt = f"Answer this smart city sustainability question:\n\nQ: {question}\nA:"
78
+ result = llm(prompt, max_new_tokens=100, temperature=0.7)[0]["generated_text"]
79
  return result.replace(prompt, "").strip()
80
 
81
  # Gradio App UI
 
124
  chat_btn = gr.Button("Ask")
125
  chat_btn.click(chat_assistant, inputs=chat_input, outputs=chat_output)
126
 
127
+ app.launch()