Spaces:
Running
Running
File size: 5,723 Bytes
8e31ab1 8d741e2 8e31ab1 8d741e2 8e31ab1 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 e266b1f 8d741e2 8e31ab1 8d741e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
import torch
from PIL import Image
import os
# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load model and tokenizer with optimizations for CPU deployment
def load_model():
print("Loading model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(
"sagar007/Lava_phi",
torch_dtype=torch.float32 if device == "cpu" else torch.bfloat16,
low_cpu_mem_usage=True,
)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained("sagar007/Lava_phi")
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("Model and tokenizer loaded successfully!")
return model, tokenizer, processor
# Load models
model, tokenizer, processor = load_model()
# For text-only generation
def generate_text(prompt, max_length=128):
try:
inputs = tokenizer(f"human: {prompt}\ngpt:", return_tensors="pt").to(device)
# Generate with low memory footprint settings
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the model's response
if "gpt:" in generated_text:
generated_text = generated_text.split("gpt:", 1)[1].strip()
return generated_text
except Exception as e:
return f"Error generating text: {str(e)}"
# For image and text processing
def process_image_and_prompt(image, prompt, max_length=128):
try:
if image is None:
return "No image provided. Please upload an image."
# Process image
image_tensor = processor(images=image, return_tensors="pt").pixel_values.to(device)
# Tokenize input with image token
inputs = tokenizer(f"human: <image>\n{prompt}\ngpt:", return_tensors="pt").to(device)
# Generate with memory optimizations
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
images=image_tensor,
max_new_tokens=max_length,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the model's response
if "gpt:" in generated_text:
generated_text = generated_text.split("gpt:", 1)[1].strip()
return generated_text
except Exception as e:
return f"Error processing image: {str(e)}"
# Create Gradio Interface
with gr.Blocks(title="LLaVA-Phi: Vision-Language Model") as demo:
gr.Markdown("# LLaVA-Phi: Vision-Language Model")
gr.Markdown("This model can generate text responses from text prompts or analyze images with text prompts.")
with gr.Tab("Text Generation"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Enter your prompt", lines=3, placeholder="What is artificial intelligence?")
text_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
text_button = gr.Button("Generate")
text_output = gr.Textbox(label="Generated response", lines=8)
text_button.click(
fn=generate_text,
inputs=[text_input, text_max_length],
outputs=text_output
)
with gr.Tab("Image + Text Analysis"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload an image")
image_text_input = gr.Textbox(label="Enter your prompt about the image",
lines=2,
placeholder="Describe this image in detail.")
image_max_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Maximum response length")
image_button = gr.Button("Analyze")
image_output = gr.Textbox(label="Model response", lines=8)
image_button.click(
fn=process_image_and_prompt,
inputs=[image_input, image_text_input, image_max_length],
outputs=image_output
)
# Example inputs for each tab
gr.Examples(
examples=["What is the advantage of vision-language models?",
"Explain how multimodal AI models work.",
"Tell me a short story about robots."],
inputs=text_input
)
# Add examples for image tab if you have example images
# gr.Examples(
# examples=[["example1.jpg", "What's in this image?"]],
# inputs=[image_input, image_text_input]
# )
# Launch the app with memory optimizations
if __name__ == "__main__":
# Memory cleanup before launch
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Set low CPU thread usage to reduce memory
os.environ["OMP_NUM_THREADS"] = "4"
# Launch with minimal resource usage
demo.launch(
share=True, # Set to False in production
enable_queue=True,
max_threads=4,
show_error=True
) |