import gradio as gr import torch from transformers import AutoProcessor, AutoModel # Keep CLIP for potential future use or if FastSAM's text prompt isn't enough from PIL import Image, ImageDraw, ImageFont import numpy as np import random import os import wget # To download weights import traceback # For detailed error printing # --- Configuration & Model Loading --- # Device Selection DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Force CPU if CUDA fails or isn't desired (sometimes needed on Spaces free tier) # DEVICE = "cpu" print(f"Using device: {DEVICE}") # --- CLIP Setup (Kept in case needed, but FastSAM's method is primary now) --- CLIP_MODEL_ID = "openai/clip-vit-base-patch32" clip_processor = None clip_model = None def load_clip_model(): global clip_processor, clip_model if clip_processor is None: try: print(f"Loading CLIP processor: {CLIP_MODEL_ID}...") clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID) print("CLIP processor loaded.") except Exception as e: print(f"Error loading CLIP processor: {e}") return False # Indicate failure if clip_model is None: try: print(f"Loading CLIP model: {CLIP_MODEL_ID}...") clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE) print(f"CLIP model loaded to {DEVICE}.") except Exception as e: print(f"Error loading CLIP model: {e}") return False # Indicate failure return True # Indicate success # --- FastSAM Setup --- FASTSAM_CHECKPOINT = "FastSAM-s.pt" FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}" fastsam_model = None fastsam_lib_imported = False # Flag to check if import worked def check_and_import_fastsam(): global fastsam_lib_imported if not fastsam_lib_imported: try: from fastsam import FastSAM, FastSAMPrompt globals()['FastSAM'] = FastSAM # Make classes available globally globals()['FastSAMPrompt'] = FastSAMPrompt fastsam_lib_imported = True print("fastsam library imported successfully.") except ImportError: print("Error: 'fastsam' library not found or import failed.") print("Please ensure 'fastsam' is installed correctly (pip install fastsam).") fastsam_lib_imported = False except Exception as e: print(f"An unexpected error occurred during fastsam import: {e}") traceback.print_exc() fastsam_lib_imported = False return fastsam_lib_imported def download_fastsam_weights(): if not os.path.exists(FASTSAM_CHECKPOINT): print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...") try: wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT) print("FastSAM weights downloaded.") except Exception as e: print(f"Error downloading FastSAM weights: {e}") print("Please ensure the URL is correct and reachable, or manually place the weights file.") if os.path.exists(FASTSAM_CHECKPOINT): try: os.remove(FASTSAM_CHECKPOINT) except OSError: pass return False return os.path.exists(FASTSAM_CHECKPOINT) def load_fastsam_model(): global fastsam_model if fastsam_model is None: if not check_and_import_fastsam(): print("Cannot load FastSAM model because the library couldn't be imported.") return False # Indicate failure if download_fastsam_weights(): try: print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...") fastsam_model = FastSAM(FASTSAM_CHECKPOINT) # The FastSAM model itself doesn't need explicit .to(DEVICE) # It seems to handle device selection internally or via the prompt process print(f"FastSAM model loaded.") return True # Indicate success except Exception as e: print(f"Error loading FastSAM model: {e}") traceback.print_exc() else: print("FastSAM weights not found or download failed. Cannot load model.") return fastsam_model is not None # Return True if already loaded or loaded successfully # --- Processing Functions --- # (Keep run_clip_zero_shot and run_fastsam_segmentation as they were for the other tabs) # CLIP Zero-Shot Classification Function def run_clip_zero_shot(image: Image.Image, text_labels: str): # Load CLIP if needed if clip_model is None or clip_processor is None: if not load_clip_model(): return "Error: CLIP Model could not be loaded. Check logs.", None if image is None: return "Please upload an image.", None if not text_labels: return {}, image # Return empty dict, show image labels = [label.strip() for label in text_labels.split(',') if label.strip()] if not labels: return {}, image print(f"Running CLIP zero-shot classification with labels: {labels}") try: if image.mode != "RGB": image = image.convert("RGB") inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE) with torch.no_grad(): outputs = clip_model(**inputs) probs = outputs.logits_per_image.softmax(dim=1) print("CLIP processing complete.") confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))} return confidences, image except Exception as e: print(f"Error during CLIP processing: {e}") traceback.print_exc() return f"An error occurred during CLIP: {e}", image # FastSAM Everything Segmentation Function (for the second tab) def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9): if not load_fastsam_model(): return "Error: FastSAM Model not loaded. Check logs." if not fastsam_lib_imported: return "Error: FastSAM library not available." if image_pil is None: return "Please upload an image." print("Running FastSAM 'segment everything'...") try: if image_pil.mode != "RGB": image_pil = image_pil.convert("RGB") image_np_rgb = np.array(image_pil) everything_results = fastsam_model( image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, conf=conf_threshold, iou=iou_threshold, ) prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) ann = prompt_process.everything_prompt() print(f"FastSAM 'everything' found {len(ann[0]['masks']) if ann and ann[0] and 'masks' in ann[0] else 0} masks.") # Plotting output_image = image_pil.copy() if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0: masks = ann[0]['masks'].cpu().numpy() overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) draw = ImageDraw.Draw(overlay) for mask in masks: color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128) mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L') draw.bitmap((0, 0), mask_image, fill=color) output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB') print("FastSAM 'everything' processing complete.") return output_image except Exception as e: print(f"Error during FastSAM 'everything' processing: {e}") traceback.print_exc() return f"An error occurred during FastSAM 'everything': {e}" # --- NEW: Text-Prompted Segmentation Function --- def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9): """Segments objects based on text prompts.""" if not load_fastsam_model(): return "Error: FastSAM Model not loaded. Check logs.", "No prompts provided." if not fastsam_lib_imported: return "Error: FastSAM library not available.", "FastSAM library error." if image_pil is None: return "Please upload an image.", "No image provided." if not text_prompts: return image_pil, "Please enter text prompts (e.g., 'person, dog')." # Return original image and message prompts = [p.strip() for p in text_prompts.split(',') if p.strip()] if not prompts: return image_pil, "No valid text prompts entered." print(f"Running FastSAM text-prompted segmentation for: {prompts}") try: if image_pil.mode != "RGB": image_pil = image_pil.convert("RGB") image_np_rgb = np.array(image_pil) # 1. Run FastSAM once to get all potential results # NOTE: We might optimize later, but this is the standard way FastSAMPrompt works. everything_results = fastsam_model( image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, conf=conf_threshold, iou=iou_threshold, verbose=False # Less console spam ) # 2. Create the prompt processor prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) # 3. Use text_prompt for each prompt and collect masks all_matching_masks = [] found_prompts = [] for text in prompts: print(f" Processing prompt: '{text}'") # Ann is a list of dictionaries, one per image. We have one image. # Each dict can have 'masks', 'bboxes', 'points'. # text_prompt filters 'everything_results' based on CLIP-like similarity. # It might return multiple masks if multiple instances match the text. ann = prompt_process.text_prompt(text=text) if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0: num_found = len(ann[0]['masks']) print(f" Found {num_found} mask(s) matching '{text}'.") found_prompts.append(f"{text} ({num_found})") masks = ann[0]['masks'].cpu().numpy() # Get masks as numpy array (N, H, W) all_matching_masks.extend(masks) # Add the numpy arrays to the list else: print(f" No masks found matching '{text}'.") found_prompts.append(f"{text} (0)") # 4. Plot the collected masks output_image = image_pil.copy() status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matching segments found for any prompt." if not all_matching_masks: print("No matching masks found for any prompt.") return output_image, status_message # Return original image if nothing matched # Convert list of (H, W) masks to a single (N, H, W) array for consistent processing masks_np = np.stack(all_matching_masks, axis=0) # Shape (TotalMasks, H, W) overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) draw = ImageDraw.Draw(overlay) for i in range(masks_np.shape[0]): mask = masks_np[i] # Shape (H, W), boolean color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 150) # RGBA with slightly more alpha mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L') draw.bitmap((0, 0), mask_image, fill=color) output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB') print("FastSAM text-prompted processing complete.") return output_image, status_message except Exception as e: print(f"Error during FastSAM text-prompted processing: {e}") traceback.print_exc() return f"An error occurred: {e}", "Error during processing." # --- Gradio Interface --- print("Attempting to preload models...") # load_clip_model() # Load CLIP lazily if needed load_fastsam_model() # Load FastSAM eagerly print("Preloading finished (or attempted).") with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# CLIP & FastSAM Demo") gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.") with gr.Tabs(): # --- CLIP Tab (No changes) --- with gr.TabItem("CLIP Zero-Shot Classification"): # ... (keep the existing layout and logic for CLIP) ... gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.") with gr.Row(): with gr.Column(scale=1): clip_input_image = gr.Image(type="pil", label="Input Image") clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon, dog playing fetch") clip_button = gr.Button("Run CLIP Classification", variant="primary") with gr.Column(scale=1): clip_output_label = gr.Label(label="Classification Probabilities") clip_output_image_display = gr.Image(type="pil", label="Input Image Preview") clip_button.click( run_clip_zero_shot, inputs=[clip_input_image, clip_text_labels], outputs=[clip_output_label, clip_output_image_display] ) gr.Examples( examples=[ ["examples/astronaut.jpg", "astronaut, moon, rover, mountain"], ["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"], ["examples/clip_logo.png", "logo, text, graphics, abstract art"], ], inputs=[clip_input_image, clip_text_labels], outputs=[clip_output_label, clip_output_image_display], fn=run_clip_zero_shot, cache_examples=False, ) # --- FastSAM Everything Tab (No changes) --- with gr.TabItem("FastSAM Segment Everything"): # ... (keep the existing layout and logic for segment everything) ... gr.Markdown("Upload an image. FastSAM will attempt to segment all objects/regions in the image.") with gr.Row(): with gr.Column(scale=1): fastsam_input_image_all = gr.Image(type="pil", label="Input Image", elem_id="fastsam_input_all") # Unique elem_id if needed with gr.Row(): fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary") with gr.Column(scale=1): fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", elem_id="fastsam_output_all") fastsam_button_all.click( run_fastsam_segmentation, inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], outputs=[fastsam_output_image_all] ) gr.Examples( examples=[ ["examples/dogs.jpg", 0.4, 0.9], ["examples/fruits.jpg", 0.5, 0.8], ["examples/lion.jpg", 0.45, 0.9], ], inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], outputs=[fastsam_output_image_all], fn=run_fastsam_segmentation, cache_examples=False, ) # --- NEW: Text-Prompted Segmentation Tab --- with gr.TabItem("Text-Prompted Segmentation"): gr.Markdown("Upload an image and provide comma-separated text prompts (e.g., 'person, dog, backpack'). FastSAM + CLIP (internally) will segment only the objects matching the text.") with gr.Row(): with gr.Column(scale=1): prompt_input_image = gr.Image(type="pil", label="Input Image") prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch, t-shirt") with gr.Row(): # Reuse confidence/IoU sliders if desired prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") prompt_button = gr.Button("Segment by Text", variant="primary") with gr.Column(scale=1): prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation") prompt_status_message = gr.Textbox(label="Status", interactive=False) # To show which prompts matched prompt_button.click( run_text_prompted_segmentation, inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], outputs=[prompt_output_image, prompt_status_message] # Map to image and status box ) gr.Examples( examples=[ ["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9], ["examples/astronaut.jpg", "person, helmet", 0.35, 0.9], ["examples/dogs.jpg", "dog", 0.4, 0.9], # Should find multiple dogs ["examples/fruits.jpg", "banana, apple", 0.5, 0.8], ["examples/teacher.jpg", "person, glasses, blackboard", 0.4, 0.9], # Download this image or use another one with glasses/blackboard ], inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], outputs=[prompt_output_image, prompt_status_message], fn=run_text_prompted_segmentation, cache_examples=False, ) # Ensure example images exist or are downloaded # (Keep the existing example download logic, maybe add teacher.jpg if used in examples) if not os.path.exists("examples"): os.makedirs("examples") print("Created 'examples' directory. Attempting to download sample images...") example_files = { "astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg", "dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg", "clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png", "dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg", "fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg", "lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg", "teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" # Example with glasses/board } for filename, url in example_files.items(): filepath = os.path.join("examples", filename) if not os.path.exists(filepath): try: print(f"Downloading {filename}...") wget.download(url, filepath) except Exception as e: print(f"Could not download {filename} from {url}: {e}") print("Example image download attempt finished.") # Launch the Gradio app if __name__ == "__main__": demo.launch(debug=True) # debug=True is helpful locally