Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,174 +42,82 @@ styles_mapping = {
|
|
| 42 |
|
| 43 |
# Define seeds for all the styles
|
| 44 |
seed_list = [11, 56, 110, 65, 5, 29, 47]
|
| 45 |
-
|
| 46 |
-
# Loss Function based on Edge Detection
|
| 47 |
def edge_detection(image):
|
| 48 |
channels = image.shape[1]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# ed_x = ed_x.to(torch.float16)
|
| 59 |
-
# ed_y = ed_y.to(torch.float16)
|
| 60 |
-
|
| 61 |
-
# Convolve the image with the Edge detection kernels
|
| 62 |
-
conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
|
| 63 |
-
conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)
|
| 64 |
-
|
| 65 |
-
# Combine the x and y gradients after convolution
|
| 66 |
-
ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)
|
| 67 |
-
|
| 68 |
-
return ed_value
|
| 69 |
-
|
| 70 |
-
def edge_loss(image):
|
| 71 |
-
ed_value = edge_detection(image)
|
| 72 |
-
ed_capped = (ed_value > 0.5).to(torch.float32)
|
| 73 |
-
return F.mse_loss(ed_value, ed_capped)
|
| 74 |
-
|
| 75 |
-
def compute_loss(original_image, loss_type):
|
| 76 |
-
|
| 77 |
if loss_type == 'blue':
|
| 78 |
-
|
| 79 |
-
# [:,2] -> all images in batch, only the blue channel
|
| 80 |
-
error = torch.abs(original_image[:,2] - 0.9).mean()
|
| 81 |
elif loss_type == 'edge':
|
| 82 |
-
|
| 83 |
-
|
| 84 |
elif loss_type == 'contrast':
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
error = torch.abs(transformed_image - original_image).mean()
|
| 88 |
elif loss_type == 'brightness':
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
error = torch.abs(transformed_image - original_image).mean()
|
| 92 |
elif loss_type == 'sharpness':
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
error = torch.abs(transformed_image - original_image).mean()
|
| 96 |
elif loss_type == 'saturation':
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
error = torch.abs(transformed_image - original_image).mean()
|
| 100 |
else:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
return error
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def get_examples():
|
| 108 |
-
examples = [
|
| 109 |
-
['A bird sitting on a tree', 'Midjourney', 'edge'],
|
| 110 |
-
['Cats fighting on the road', 'Marc Allante', 'brightness'],
|
| 111 |
-
['A mouse with the head of a puppy', 'Hitokomoru Style', 'contrast'],
|
| 112 |
-
['A woman with a smiling face in front of an Italian Pizza', 'Hanfu Anime', 'brightness'],
|
| 113 |
-
['A campfire (oil on canvas)', 'Birb Style', 'blue'],
|
| 114 |
-
]
|
| 115 |
-
return examples
|
| 116 |
-
|
| 117 |
-
# Existing functions (latents_to_pil, show_image, generate_image)
|
| 118 |
-
# ... (Copy all the existing functions here)
|
| 119 |
-
def latents_to_pil(latents):
|
| 120 |
-
# bath of latents -> list of images
|
| 121 |
-
latents = (1 / 0.18215) * latents
|
| 122 |
-
with torch.no_grad():
|
| 123 |
-
image = sd_pipeline.vae.decode(latents).sample
|
| 124 |
-
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
|
| 125 |
-
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 126 |
-
image = (image * 255).round().astype("uint8")
|
| 127 |
-
return Image.fromarray(image[0])
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def show_image(prompt, concept, guidance_type):
|
| 131 |
-
|
| 132 |
-
for idx, sd in enumerate(styles_mapping.keys()):
|
| 133 |
-
if(sd == concept):
|
| 134 |
-
break
|
| 135 |
-
seed = seed_list[idx]
|
| 136 |
-
prompt = f"{prompt} in the style of {styles_mapping[sd]}"
|
| 137 |
-
styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
|
| 138 |
-
styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
|
| 139 |
-
return([styled_image_without_loss, styled_image_with_loss])
|
| 140 |
-
|
| 141 |
|
|
|
|
|
|
|
| 142 |
def generate_image(seed, prompt, loss_type, loss_flag=False):
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
batch_size = 1
|
| 146 |
-
|
| 147 |
-
# scheduler
|
| 148 |
-
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
|
| 149 |
-
scheduler.set_timesteps(num_inference_steps)
|
| 150 |
-
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
| 151 |
-
|
| 152 |
-
# text embeddings of the prompt
|
| 153 |
-
text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
|
| 154 |
-
input_ids = text_input.input_ids.to(torch_device)
|
| 155 |
-
|
| 156 |
-
with torch.no_grad():
|
| 157 |
-
text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0]
|
| 158 |
|
| 159 |
-
max_length = text_input.input_ids.shape[-1]
|
| 160 |
-
uncond_input = sd_pipeline.tokenizer(
|
| 161 |
-
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
with torch.no_grad():
|
| 165 |
-
uncond_embeddings = sd_pipeline.text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
| 166 |
-
|
| 167 |
-
text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # shape: 2,77,768
|
| 168 |
-
|
| 169 |
-
# random latent
|
| 170 |
latents = torch.randn(
|
| 171 |
-
(batch_size, sd_pipeline.unet.config.in_channels, height// 8, width //8),
|
| 172 |
-
generator
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
|
| 176 |
-
latents = latents.
|
| 177 |
-
latents = latents * scheduler.init_noise_sigma
|
| 178 |
|
| 179 |
-
|
| 180 |
|
|
|
|
| 181 |
latent_model_input = torch.cat([latents] * 2)
|
| 182 |
-
|
| 183 |
-
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 184 |
|
| 185 |
with torch.no_grad():
|
| 186 |
-
noise_pred = sd_pipeline.unet(latent_model_input
|
| 187 |
|
| 188 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 189 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 190 |
|
| 191 |
-
if loss_flag and i%5 == 0:
|
| 192 |
-
|
| 193 |
latents = latents.detach().requires_grad_()
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
latents_x0 = latents - sigma * noise_pred
|
| 198 |
-
|
| 199 |
-
# use vae to decode the image
|
| 200 |
-
denoised_images = sd_pipeline.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)
|
| 201 |
|
| 202 |
loss = compute_loss(denoised_images, loss_type) * loss_scale
|
| 203 |
-
|
| 204 |
-
print(f"{i} loss {loss}")
|
| 205 |
|
| 206 |
cond_grad = torch.autograd.grad(loss, latents)[0]
|
| 207 |
-
latents = latents.detach() - cond_grad *
|
| 208 |
|
| 209 |
-
latents = scheduler.step(noise_pred,t, latents).prev_sample
|
| 210 |
|
| 211 |
return latents
|
| 212 |
|
|
|
|
| 213 |
# Gradio interface function
|
| 214 |
def generate_images(prompt, style, guidance_type):
|
| 215 |
images = show_image(prompt, style, guidance_type)
|
|
|
|
| 42 |
|
| 43 |
# Define seeds for all the styles
|
| 44 |
seed_list = [11, 56, 110, 65, 5, 29, 47]
|
| 45 |
+
# Optimized loss computation functions
|
|
|
|
| 46 |
def edge_detection(image):
|
| 47 |
channels = image.shape[1]
|
| 48 |
+
kernels = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1],
|
| 49 |
+
[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=image.device).float()
|
| 50 |
+
kernels = kernels.view(2, 1, 3, 3).repeat(channels, 1, 1, 1)
|
| 51 |
+
padded_image = F.pad(image, (1, 1, 1, 1), mode='replicate')
|
| 52 |
+
edge = F.conv2d(padded_image, kernels, groups=channels)
|
| 53 |
+
return torch.sqrt(edge[:, :channels]**2 + edge[:, channels:]**2)
|
| 54 |
+
|
| 55 |
+
@torch.jit.script
|
| 56 |
+
def compute_loss(original_image, loss_type: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if loss_type == 'blue':
|
| 58 |
+
return torch.abs(original_image[:,2] - 0.9).mean()
|
|
|
|
|
|
|
| 59 |
elif loss_type == 'edge':
|
| 60 |
+
ed_value = edge_detection(original_image)
|
| 61 |
+
return F.mse_loss(ed_value, (ed_value > 0.5).float())
|
| 62 |
elif loss_type == 'contrast':
|
| 63 |
+
transformed_image = T.functional.adjust_contrast(original_image, contrast_factor=2)
|
| 64 |
+
return torch.abs(transformed_image - original_image).mean()
|
|
|
|
| 65 |
elif loss_type == 'brightness':
|
| 66 |
+
transformed_image = T.functional.adjust_brightness(original_image, brightness_factor=2)
|
| 67 |
+
return torch.abs(transformed_image - original_image).mean()
|
|
|
|
| 68 |
elif loss_type == 'sharpness':
|
| 69 |
+
transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor=2)
|
| 70 |
+
return torch.abs(transformed_image - original_image).mean()
|
|
|
|
| 71 |
elif loss_type == 'saturation':
|
| 72 |
+
transformed_image = T.functional.adjust_saturation(original_image, saturation_factor=10)
|
| 73 |
+
return torch.abs(transformed_image - original_image).mean()
|
|
|
|
| 74 |
else:
|
| 75 |
+
return torch.tensor(0.0, device=original_image.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Optimized generate_image function
|
| 78 |
+
@torch.cuda.amp.autocast()
|
| 79 |
def generate_image(seed, prompt, loss_type, loss_flag=False):
|
| 80 |
+
generator = torch.manual_seed(seed)
|
| 81 |
+
batch_size = 1
|
| 82 |
|
| 83 |
+
text_embeddings = sd_pipeline._encode_prompt(prompt, sd_pipeline.device, 1, True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
latents = torch.randn(
|
| 86 |
+
(batch_size, sd_pipeline.unet.config.in_channels, height // 8, width // 8),
|
| 87 |
+
generator=generator,
|
| 88 |
+
).to(sd_pipeline.device)
|
|
|
|
| 89 |
|
| 90 |
+
latents = latents * sd_pipeline.scheduler.init_noise_sigma
|
|
|
|
| 91 |
|
| 92 |
+
sd_pipeline.scheduler.set_timesteps(num_inference_steps)
|
| 93 |
|
| 94 |
+
for i, t in enumerate(tqdm(sd_pipeline.scheduler.timesteps)):
|
| 95 |
latent_model_input = torch.cat([latents] * 2)
|
| 96 |
+
latent_model_input = sd_pipeline.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
| 97 |
|
| 98 |
with torch.no_grad():
|
| 99 |
+
noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
| 100 |
|
| 101 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 102 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 103 |
|
| 104 |
+
if loss_flag and i % 5 == 0:
|
|
|
|
| 105 |
latents = latents.detach().requires_grad_()
|
| 106 |
+
latents_x0 = sd_pipeline.scheduler.step(noise_pred, t, latents).pred_original_sample
|
| 107 |
+
with torch.no_grad():
|
| 108 |
+
denoised_images = sd_pipeline.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
loss = compute_loss(denoised_images, loss_type) * loss_scale
|
| 111 |
+
print(f"Step {i}, Loss: {loss.item():.4f}")
|
|
|
|
| 112 |
|
| 113 |
cond_grad = torch.autograd.grad(loss, latents)[0]
|
| 114 |
+
latents = latents.detach() - cond_grad * sd_pipeline.scheduler.sigmas[i] ** 2
|
| 115 |
|
| 116 |
+
latents = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample
|
| 117 |
|
| 118 |
return latents
|
| 119 |
|
| 120 |
+
|
| 121 |
# Gradio interface function
|
| 122 |
def generate_images(prompt, style, guidance_type):
|
| 123 |
images = show_image(prompt, style, guidance_type)
|