File size: 15,249 Bytes
3515cf9
e5492ea
 
 
 
 
3515cf9
e5492ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec93e3
 
3515cf9
e5492ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3515cf9
67b7441
e5492ea
 
fec93e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import gradio as gr
import numpy as np
import random
from PIL import Image, ImageDraw, ImageFont
import io
import base64

class LudoGame:
    def __init__(self):
        # Player colors
        self.colors = ["red", "green", "yellow", "blue"]
        self.color_codes = {
            "red": "#FF5555",
            "green": "#55FF55",
            "yellow": "#FFFF55",
            "blue": "#5555FF",
            "white": "#FFFFFF",
            "black": "#000000"
        }
        
        # Game state
        self.reset_game()
    
    def reset_game(self):
        # Initialize game state
        self.current_player = 0
        self.dice_value = 1
        self.dice_rolled = False
        self.winner = None
        
        # Initialize tokens (4 tokens per player)
        self.tokens = {}
        for i, color in enumerate(self.colors):
            self.tokens[color] = [-1, -1, -1, -1]  # -1 means in home
        
        # Track if player can play after rolling
        self.can_play = False
        
        # Game messages
        self.message = f"Game started! {self.colors[self.current_player].capitalize()}'s turn to roll."
    
    def roll_dice(self):
        """Roll the dice and return the value"""
        if self.winner:
            return self.render_board()
        
        if self.dice_rolled:
            self.message = f"You already rolled a {self.dice_value}. Please move a token or pass."
            return self.render_board()
        
        self.dice_value = random.randint(1, 6)
        self.dice_rolled = True
        
        # Check if player can move any token
        self.can_play = self._can_play()
        
        if not self.can_play:
            # If player rolled 6, give them another turn
            if self.dice_value == 6:
                self.message = f"{self.colors[self.current_player].capitalize()} rolled a 6 but can't move. Roll again!"
                self.dice_rolled = False
            else:
                self.message = f"{self.colors[self.current_player].capitalize()} rolled {self.dice_value} but can't move. Next player's turn."
                self._next_player()
        else:
            self.message = f"{self.colors[self.current_player].capitalize()} rolled {self.dice_value}. Choose a token to move."
        
        return self.render_board()
    
    def _can_play(self):
        """Check if current player can move any token"""
        current_color = self.colors[self.current_player]
        tokens = self.tokens[current_color]
        
        for i, position in enumerate(tokens):
            if position == -1 and self.dice_value == 6:
                # Can move out of home
                return True
            elif position >= 0:
                # Token is already on the board
                return True
        
        return False
    
    def move_token(self, token_idx):
        """Move the selected token for the current player"""
        if self.winner:
            return self.render_board()
        
        if not self.dice_rolled:
            self.message = "Please roll the dice first."
            return self.render_board()
        
        if not self.can_play:
            self.message = "You can't move any token. Please pass your turn."
            return self.render_board()
        
        current_color = self.colors[self.current_player]
        current_pos = self.tokens[current_color][token_idx]
        
        # Token still in home and not rolled a 6
        if current_pos == -1 and self.dice_value != 6:
            self.message = "Need to roll a 6 to move a token out of home."
            return self.render_board()
        
        # Token in home and rolled a 6
        if current_pos == -1 and self.dice_value == 6:
            # Put token on the board at starting position (different for each player)
            self.tokens[current_color][token_idx] = self.current_player * 13
            self.message = f"{current_color.capitalize()} token {token_idx+1} is now on the board."
            self.dice_rolled = False
            return self.render_board()
        
        # Token already on board
        new_pos = (current_pos + self.dice_value) % 52
        
        # Check for token captures (simplistic implementation)
        for color in self.colors:
            if color != current_color:
                for i, pos in enumerate(self.tokens[color]):
                    if pos == new_pos:
                        # Capture token
                        self.tokens[color][i] = -1
                        self.message = f"{current_color.capitalize()} captured {color}'s token!"
        
        # Move token
        self.tokens[current_color][token_idx] = new_pos
        
        # Check if the player has won (simplistic - all tokens completed a full circle)
        if self._check_winner():
            self.winner = self.current_player
            self.message = f"{current_color.capitalize()} wins the game!"
        else:
            self.message = f"{current_color.capitalize()} moved token {token_idx+1} to position {new_pos}."
            
            # If player rolled 6, give them another turn
            if self.dice_value == 6:
                self.message += " Roll again!"
            else:
                self._next_player()
        
        self.dice_rolled = False
        return self.render_board()
    
    def _check_winner(self):
        """Very simple win check - if all tokens made a complete circuit"""
        current_color = self.colors[self.current_player]
        starting_pos = self.current_player * 13
        
        for pos in self.tokens[current_color]:
            if pos < starting_pos:  # Simplified win condition
                return False
        
        return True
    
    def _next_player(self):
        """Move to the next player's turn"""
        self.current_player = (self.current_player + 1) % 4
        self.dice_rolled = False
        self.message += f" {self.colors[self.current_player].capitalize()}'s turn to roll."
    
    def pass_turn(self):
        """Pass the current player's turn"""
        if self.winner:
            return self.render_board()
        
        if not self.dice_rolled:
            self.message = "Please roll the dice first."
            return self.render_board()
        
        if self.can_play:
            self.message = "You have valid moves available. Please move a token."
            return self.render_board()
        
        self._next_player()
        return self.render_board()
    
    def render_board(self):
        """Render the Ludo board as an image"""
        # Create a new image with white background
        width, height = 600, 600
        board = Image.new('RGB', (width, height), color='white')
        draw = ImageDraw.Draw(board)
        
        # Draw the game board (simplified version)
        # Draw the outer square
        draw.rectangle([(50, 50), (550, 550)], outline='black', width=2)
        
        # Draw the home squares for each player
        home_squares = [
            (50, 50, 250, 250),    # Red (top-left)
            (350, 50, 550, 250),   # Green (top-right)
            (50, 350, 250, 550),   # Yellow (bottom-left)
            (350, 350, 550, 550)   # Blue (bottom-right)
        ]
        
        for i, color in enumerate(self.colors):
            draw.rectangle(home_squares[i], fill=self.color_codes[color], outline='black', width=2)
        
        # Draw the center square
        draw.rectangle([(250, 250), (350, 350)], fill='white', outline='black', width=2)
        
        # Draw the path (simplified)
        # Horizontal paths
        draw.rectangle([(250, 50), (350, 250)], fill='white', outline='black', width=1)  # Top
        draw.rectangle([(250, 350), (350, 550)], fill='white', outline='black', width=1)  # Bottom
        draw.rectangle([(50, 250), (250, 350)], fill='white', outline='black', width=1)  # Left
        draw.rectangle([(350, 250), (550, 350)], fill='white', outline='black', width=1)  # Right
        
        # Draw the tokens
        for color_idx, color in enumerate(self.colors):
            for token_idx, position in enumerate(self.tokens[color]):
                if position == -1:
                    # Token in home - draw in home area
                    home_x = home_squares[color_idx][0] + 50 + (token_idx % 2) * 100
                    home_y = home_squares[color_idx][1] + 50 + (token_idx // 2) * 100
                    draw.ellipse([(home_x-20, home_y-20), (home_x+20, home_y+20)], 
                                fill=self.color_codes[color], outline='black', width=2)
                else:
                    # Token on board - simplified position calculation
                    # This is a very basic mapping for illustration
                    board_positions = [
                        # Top row (left to right)
                        (100, 300), (150, 300), (200, 300), (250, 300), (300, 300), (350, 300), (400, 300), (450, 300), (500, 300),
                        # Right column (top to bottom)
                        (500, 350), (500, 400), (500, 450), (500, 500),
                        # Bottom row (right to left)
                        (450, 500), (400, 500), (350, 500), (300, 500), (250, 500), (200, 500), (150, 500), (100, 500),
                        # Left column (bottom to top)
                        (100, 450), (100, 400), (100, 350), (100, 300),
                        # Inner track (simplified approximation)
                        # Repeat the pattern for simplicity
                        (100, 300), (150, 300), (200, 300), (250, 300), (300, 300), (350, 300), (400, 300), (450, 300), (500, 300),
                        (500, 350), (500, 400), (500, 450), (500, 500),
                        (450, 500), (400, 500), (350, 500), (300, 500), (250, 500), (200, 500), (150, 500), (100, 500),
                        (100, 450), (100, 400), (100, 350), (100, 300),
                    ]
                    
                    if position < len(board_positions):
                        token_x, token_y = board_positions[position]
                        draw.ellipse([(token_x-15, token_y-15), (token_x+15, token_y+15)], 
                                    fill=self.color_codes[color], outline='black', width=2)
                        # Draw token number
                        draw.text((token_x-5, token_y-5), str(token_idx+1), fill='black')
        
        # Draw the dice
        dice_x, dice_y = 300, 300
        draw.rectangle([(dice_x-25, dice_y-25), (dice_x+25, dice_y+25)], fill='white', outline='black', width=2)
        
        # Draw dice pips based on value
        if self.dice_value == 1:
            draw.ellipse([(dice_x-5, dice_y-5), (dice_x+5, dice_y+5)], fill='black')
        elif self.dice_value == 2:
            draw.ellipse([(dice_x-15, dice_y-15), (dice_x-5, dice_y-5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y+5), (dice_x+15, dice_y+15)], fill='black')
        elif self.dice_value == 3:
            draw.ellipse([(dice_x-15, dice_y-15), (dice_x-5, dice_y-5)], fill='black')
            draw.ellipse([(dice_x-5, dice_y-5), (dice_x+5, dice_y+5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y+5), (dice_x+15, dice_y+15)], fill='black')
        elif self.dice_value == 4:
            draw.ellipse([(dice_x-15, dice_y-15), (dice_x-5, dice_y-5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y-15), (dice_x+15, dice_y-5)], fill='black')
            draw.ellipse([(dice_x-15, dice_y+5), (dice_x-5, dice_y+15)], fill='black')
            draw.ellipse([(dice_x+5, dice_y+5), (dice_x+15, dice_y+15)], fill='black')
        elif self.dice_value == 5:
            draw.ellipse([(dice_x-15, dice_y-15), (dice_x-5, dice_y-5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y-15), (dice_x+15, dice_y-5)], fill='black')
            draw.ellipse([(dice_x-5, dice_y-5), (dice_x+5, dice_y+5)], fill='black')
            draw.ellipse([(dice_x-15, dice_y+5), (dice_x-5, dice_y+15)], fill='black')
            draw.ellipse([(dice_x+5, dice_y+5), (dice_x+15, dice_y+15)], fill='black')
        elif self.dice_value == 6:
            draw.ellipse([(dice_x-15, dice_y-15), (dice_x-5, dice_y-5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y-15), (dice_x+15, dice_y-5)], fill='black')
            draw.ellipse([(dice_x-15, dice_y-5), (dice_x-5, dice_y+5)], fill='black')
            draw.ellipse([(dice_x+5, dice_y-5), (dice_x+15, dice_y+5)], fill='black')
            draw.ellipse([(dice_x-15, dice_y+5), (dice_x-5, dice_y+15)], fill='black')
            draw.ellipse([(dice_x+5, dice_y+5), (dice_x+15, dice_y+15)], fill='black')
        
        # Draw the current player indicator
        current_color = self.colors[self.current_player]
        draw.rectangle([(20, 20), (40, 40)], fill=self.color_codes[current_color], outline='black', width=2)
        
        # Draw game message
        draw.text((50, 20), self.message, fill='black')
        
        # Return the PIL Image directly - Gradio can handle PIL images
        return board

# Create the Gradio interface
def create_ludo_game():
    game = LudoGame()
    
    def roll():
        return game.roll_dice()
    
    def move_token_0():
        return game.move_token(0)
    
    def move_token_1():
        return game.move_token(1)
    
    def move_token_2():
        return game.move_token(2)
    
    def move_token_3():
        return game.move_token(3)
    
    def pass_turn():
        return game.pass_turn()
    
    def reset():
        game.reset_game()
        return game.render_board()
    
    with gr.Blocks() as ludo_app:
        gr.Markdown("# Ludo Game")
        gr.Markdown("### A classic 4-player board game")
        
        with gr.Row():
            with gr.Column():
                image_output = gr.Image(type="pil", label="Ludo Board")
                
                with gr.Row():
                    roll_button = gr.Button("Roll Dice")
                
                with gr.Row():
                    token1_button = gr.Button("Move Token 1")
                    token2_button = gr.Button("Move Token 2")
                    token3_button = gr.Button("Move Token 3")
                    token4_button = gr.Button("Move Token 4")
                
                with gr.Row():
                    pass_button = gr.Button("Pass Turn")
                    reset_button = gr.Button("Reset Game")
        
        # Set up button click events
        roll_button.click(roll, inputs=[], outputs=[image_output])
        token1_button.click(move_token_0, inputs=[], outputs=[image_output])
        token2_button.click(move_token_1, inputs=[], outputs=[image_output])
        token3_button.click(move_token_2, inputs=[], outputs=[image_output])
        token4_button.click(move_token_3, inputs=[], outputs=[image_output])
        pass_button.click(pass_turn, inputs=[], outputs=[image_output])
        reset_button.click(reset, inputs=[], outputs=[image_output])
        
        # Initialize the board on load
        ludo_app.load(fn=game.render_board, inputs=None, outputs=image_output)
    
    return ludo_app

# Launch the app
if __name__ == "__main__":
    app = create_ludo_game()
    app.launch(share=True)