File size: 1,946 Bytes
985eabb
 
d0ce6f0
cc1b568
8b8d0cf
 
 
d0ce6f0
 
 
8b8d0cf
 
 
 
d0ce6f0
 
 
 
 
 
 
 
 
1f7ba92
02a0e92
1f7ba92
 
02a0e92
1f7ba92
 
d0ce6f0
 
1f7ba92
 
 
 
 
02a0e92
 
d0ce6f0
1f7ba92
d0ce6f0
 
 
 
 
 
 
 
 
 
 
 
1f7ba92
d0ce6f0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch
from transformers import AutoTokenizer, pipeline

# Load the model and tokenizer
model_name = "akjindal53244/Llama-3.1-Storm-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline(
    "text-generation",
    model=model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# HTML content
HTML_CONTENT = """
<h1>Llama-3.1-Storm-8B Text Generation</h1>
<p>Generate text using the powerful Llama-3.1-Storm-8B model. Enter a prompt and let the AI create!</p>
<div class="llama-image">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama" style="width:200px; border-radius:10px;">
</div>
"""

def generate_text(prompt, max_length, temperature):
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    
    outputs = pipe(
        formatted_prompt,
        max_new_tokens=max_length,
        do_sample=True,
        temperature=temperature,
        top_k=100,
        top_p=0.95,
    )
    
    return outputs[0]['generated_text'][len(formatted_prompt):]

with gr.Blocks() as demo:
    gr.HTML(HTML_CONTENT)
    with gr.Row():
        with gr.Column(scale=2):
            prompt = gr.Textbox(label="Prompt", lines=5)
            max_length = gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length")
            temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
            submit_button = gr.Button("Generate")
        with gr.Column(scale=2):
            output = gr.Textbox(label="Generated Text", lines=10)
    
    submit_button.click(generate_text, inputs=[prompt, max_length, temperature], outputs=[output])

if __name__ == "__main__":
    demo.launch()