Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# HTML template for custom UI | |
HTML_TEMPLATE = """ | |
<style> | |
body { background: linear-gradient(135deg, #f5f7fa, #c3cfe2); } | |
#app-header { | |
text-align: center; | |
background: rgba(255, 255, 255, 0.8); | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
position: relative; | |
} | |
#app-header h1 { color: #4CAF50; font-size: 2em; margin-bottom: 10px; } | |
.concept { position: relative; transition: transform 0.3s; } | |
.concept:hover { transform: scale(1.1); } | |
.concept img { | |
width: 100px; | |
border-radius: 10px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.concept-description { | |
position: absolute; | |
bottom: -30px; | |
left: 50%; | |
transform: translateX(-50%); | |
background-color: #4CAF50; | |
color: white; | |
padding: 5px 10px; | |
border-radius: 5px; | |
opacity: 0; | |
transition: opacity 0.3s; | |
} | |
.concept:hover .concept-description { opacity: 1; } | |
.artifact { | |
position: absolute; | |
background: rgba(76, 175, 80, 0.1); | |
border-radius: 50%; | |
} | |
.artifact.large { width: 300px; height: 300px; top: -50px; left: -150px; } | |
.artifact.medium { width: 200px; height: 200px; bottom: -50px; right: -100px; } | |
.artifact.small { | |
width: 100px; | |
height: 100px; | |
top: 50%; | |
left: 50%; | |
transform: translate(-50%, -50%); | |
} | |
</style> | |
<div id="app-header"> | |
<div class="artifact large"></div> | |
<div class="artifact medium"></div> | |
<div class="artifact small"></div> | |
<h1>Llama-3.1-Storm-8B Text Generator</h1> | |
<p>Generate text using the Llama-3.1-Storm-8B model by providing a prompt.</p> | |
<div style="display: flex; justify-content: center; gap: 20px; margin-top: 20px;"> | |
<div class="concept"> | |
<img src="https://raw.githubusercontent.com/huggingface/huggingface.js/main/packages/inference/src/tasks/images/llama.png" alt="Llama"> | |
<div class="concept-description">Llama Model</div> | |
</div> | |
<div class="concept"> | |
<img src="https://raw.githubusercontent.com/huggingface/huggingface.js/main/packages/inference/src/tasks/images/language.png" alt="Language"> | |
<div class="concept-description">Natural Language Processing</div> | |
</div> | |
<div class="concept"> | |
<img src="https://raw.githubusercontent.com/huggingface/huggingface.js/main/packages/inference/src/tasks/images/text-generation.png" alt="Text Generation"> | |
<div class="concept-description">Text Generation</div> | |
</div> | |
</div> | |
</div> | |
""" | |
# Load the model and tokenizer | |
model_name = "akjindal53244/Llama-3.1-Storm-8B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
def generate_text(prompt, max_length, temperature): | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) | |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_length, | |
do_sample=True, | |
temperature=temperature, | |
top_k=100, | |
top_p=0.95, | |
) | |
return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, label="Prompt"), | |
gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
], | |
outputs=gr.Textbox(lines=10, label="Generated Text"), | |
title="Llama-3.1-Storm-8B Text Generation", | |
description="Enter a prompt to generate text using the Llama-3.1-Storm-8B model.", | |
article=HTML_TEMPLATE | |
) | |
iface.launch() |