Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import pipeline, AutoTokenizer | |
import nltk | |
import os | |
import uvicorn | |
import time | |
from chunker import chunk_by_token_limit | |
# Setup NLTK directory | |
NLTK_DATA_DIR = "/app/nltk_data" | |
os.makedirs(NLTK_DATA_DIR, exist_ok=True) | |
nltk.data.path.append(NLTK_DATA_DIR) | |
print("π¦ Downloading NLTK 'punkt' tokenizer...") | |
nltk.download("punkt", download_dir=NLTK_DATA_DIR, quiet=True) | |
app = FastAPI() | |
HF_AUTH_TOKEN = os.getenv("HF_TOKEN") | |
MODEL_NAME = "VincentMuriuki/legal-summarizer" | |
print(f"π Loading summarization pipeline: {MODEL_NAME}") | |
start_model_load = time.time() | |
summarizer = pipeline("summarization", model=MODEL_NAME, token=HF_AUTH_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_AUTH_TOKEN) | |
print(f"β Model loaded in {time.time() - start_model_load:.2f}s") | |
class SummarizeInput(BaseModel): | |
text: str | |
class ChunkInput(BaseModel): | |
text: str | |
max_tokens: int = 1024 | |
def summarize_text(data: SummarizeInput): | |
print("π₯ Received summarize request.") | |
start = time.time() | |
summary = summarizer(data.text, max_length=150, min_length=30, do_sample=False) | |
duration = time.time() - start | |
print(f"π Summary generated in {duration:.2f}s.") | |
return {"summary": summary[0]["summary_text"], "time_taken": f"{duration:.2f}s"} | |
def chunk_text(data: ChunkInput): | |
print(f"π₯ Received chunking request with max_tokens={data.max_tokens}") | |
start = time.time() | |
chunks = chunk_by_token_limit(data.text, data.max_tokens, tokenizer) | |
duration = time.time() - start | |
print(f"π Chunking completed in {duration:.2f}s. Total chunks: {len(chunks)}") | |
return {"chunks": chunks, "chunk_count": len(chunks), "time_taken": f"{duration:.2f}s"} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |