Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
+
import uvicorn
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
MODEL_NAME = "VincentMuriuki/legal-summarizer"
|
9 |
+
summarizer = pipeline("summarization", model=MODEL_NAME)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
|
12 |
+
class SummarizeInput(BaseModel):
|
13 |
+
text: str
|
14 |
+
|
15 |
+
class ChunkInput(BaseModel):
|
16 |
+
text: str
|
17 |
+
max_tokens: int = 512
|
18 |
+
|
19 |
+
@app.post("/summarize")
|
20 |
+
def summarize_text(data: SummarizeInput):
|
21 |
+
summary = summarizer(data.text, max_length=150, min_length=30, do_sample=False)
|
22 |
+
return {"summary": summary[0]["summary_text"]}
|
23 |
+
|
24 |
+
@app.post("/chunk")
|
25 |
+
def chunk_text(data: ChunkInput):
|
26 |
+
tokens = tokenizer.encode(data.text, truncation=False)
|
27 |
+
chunks = []
|
28 |
+
|
29 |
+
for i in range(0, len(tokens), data.max_tokens):
|
30 |
+
chunk_tokens = tokens[i:i + data.max_tokens]
|
31 |
+
chunk_text = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
|
32 |
+
chunks.append(chunk_text.strip())
|
33 |
+
|
34 |
+
return {"chunks": chunks}
|
35 |
+
|
36 |
+
if _name_ == "_main_":
|
37 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|