Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,25 @@ import nltk
|
|
5 |
import os
|
6 |
import uvicorn
|
7 |
|
|
|
|
|
8 |
nltk.download('punkt', quiet=True)
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
HF_AUTH_TOKEN = os.getenv("HF_TOKEN")
|
13 |
|
14 |
MODEL_NAME = "VincentMuriuki/legal-summarizer"
|
15 |
-
summarizer = pipeline("summarization", model=MODEL_NAME,
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,
|
17 |
|
18 |
class SummarizeInput(BaseModel):
|
19 |
text: str
|
20 |
|
21 |
class ChunkInput(BaseModel):
|
22 |
text: str
|
23 |
-
max_tokens: int =
|
24 |
|
25 |
-
# Summarize endpoint
|
26 |
@app.post("/summarize")
|
27 |
def summarize_text(data: SummarizeInput):
|
28 |
summary = summarizer(data.text, max_length=150, min_length=30, do_sample=False)
|
@@ -30,25 +31,9 @@ def summarize_text(data: SummarizeInput):
|
|
30 |
|
31 |
@app.post("/chunk")
|
32 |
def chunk_text(data: ChunkInput):
|
33 |
-
|
34 |
-
chunks = []
|
35 |
-
current_chunk = ""
|
36 |
-
current_token_count = 0
|
37 |
-
|
38 |
-
for sentence in sentences:
|
39 |
-
token_count = len(tokenizer.tokenize(sentence))
|
40 |
-
if current_token_count + token_count > data.max_tokens:
|
41 |
-
if current_chunk:
|
42 |
-
chunks.append(current_chunk.strip())
|
43 |
-
current_chunk = sentence
|
44 |
-
current_token_count = token_count
|
45 |
-
else:
|
46 |
-
current_chunk = f"{current_chunk} {sentence}".strip()
|
47 |
-
current_token_count += token_count
|
48 |
-
|
49 |
-
if current_chunk:
|
50 |
-
chunks.append(current_chunk.strip())
|
51 |
-
|
52 |
return {"chunks": chunks}
|
|
|
53 |
if __name__ == "__main__":
|
54 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
5 |
import os
|
6 |
import uvicorn
|
7 |
|
8 |
+
from chunker import chunk_by_token_limit
|
9 |
+
|
10 |
nltk.download('punkt', quiet=True)
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
HF_AUTH_TOKEN = os.getenv("HF_TOKEN")
|
15 |
|
16 |
MODEL_NAME = "VincentMuriuki/legal-summarizer"
|
17 |
+
summarizer = pipeline("summarization", model=MODEL_NAME, use_auth_token=HF_AUTH_TOKEN)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_AUTH_TOKEN)
|
19 |
|
20 |
class SummarizeInput(BaseModel):
|
21 |
text: str
|
22 |
|
23 |
class ChunkInput(BaseModel):
|
24 |
text: str
|
25 |
+
max_tokens: int = 1024
|
26 |
|
|
|
27 |
@app.post("/summarize")
|
28 |
def summarize_text(data: SummarizeInput):
|
29 |
summary = summarizer(data.text, max_length=150, min_length=30, do_sample=False)
|
|
|
31 |
|
32 |
@app.post("/chunk")
|
33 |
def chunk_text(data: ChunkInput):
|
34 |
+
chunks = chunk_by_token_limit(data.text, data.max_tokens, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return {"chunks": chunks}
|
36 |
+
|
37 |
if __name__ == "__main__":
|
38 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
39 |
+
|