Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,22 @@
|
|
1 |
-
import os
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline, AutoTokenizer
|
|
|
5 |
import uvicorn
|
6 |
|
7 |
-
# Create a custom cache directory inside app folder
|
8 |
-
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
|
9 |
-
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
model=MODEL_NAME,
|
18 |
-
use_auth_token=HF_AUTH_TOKEN
|
19 |
-
)
|
20 |
|
21 |
-
tokenizer
|
22 |
-
|
23 |
-
|
24 |
-
)
|
25 |
|
26 |
class SummarizeInput(BaseModel):
|
27 |
text: str
|
@@ -48,4 +43,4 @@ def chunk_text(data: ChunkInput):
|
|
48 |
return {"chunks": chunks}
|
49 |
|
50 |
if _name_ == "_main_":
|
51 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline, AutoTokenizer
|
4 |
+
import os
|
5 |
import uvicorn
|
6 |
|
|
|
|
|
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Safe local cache directory for HF models
|
10 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
11 |
+
os.environ["HF_HOME"] = "/app/hf"
|
12 |
|
13 |
+
# Read Hugging Face token from environment
|
14 |
+
HF_AUTH_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
15 |
|
16 |
+
# Load model and tokenizer using auth token
|
17 |
+
MODEL_NAME = "VincentMuriuki/legal-summarizer"
|
18 |
+
summarizer = pipeline("summarization", model=MODEL_NAME, use_auth_token=HF_AUTH_TOKEN)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_AUTH_TOKEN)
|
20 |
|
21 |
class SummarizeInput(BaseModel):
|
22 |
text: str
|
|
|
43 |
return {"chunks": chunks}
|
44 |
|
45 |
if _name_ == "_main_":
|
46 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|