Update clause_tagger.py
Browse files- clause_tagger.py +51 -5
clause_tagger.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from typing import List, Dict, Any
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
import numpy as np
|
@@ -14,8 +15,16 @@ class ClauseTagger:
|
|
14 |
"""Initialize embedding model and load clause references"""
|
15 |
if self.embedding_model is None:
|
16 |
print("🧠 Loading embedding model for clause tagging...")
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
print("✅ Embedding model loaded")
|
20 |
|
21 |
# Load clause references
|
@@ -53,7 +62,7 @@ class ClauseTagger:
|
|
53 |
return clauses
|
54 |
|
55 |
async def tag_clauses(self, chunks: List[str]) -> List[Dict[str, Any]]:
|
56 |
-
"""Tag clauses in document chunks"""
|
57 |
if not self.clause_reference:
|
58 |
return []
|
59 |
|
@@ -75,7 +84,7 @@ class ClauseTagger:
|
|
75 |
)[0][0]
|
76 |
|
77 |
# Only include matches above threshold
|
78 |
-
if similarity > 0.7:
|
79 |
tagged_clauses.append({
|
80 |
'clause_id': clause['id'],
|
81 |
'clause_type': clause['type'],
|
@@ -88,4 +97,41 @@ class ClauseTagger:
|
|
88 |
|
89 |
# Sort by similarity score and return top matches
|
90 |
tagged_clauses.sort(key=lambda x: x['similarity_score'], reverse=True)
|
91 |
-
return tagged_clauses[:20]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# clause_tagger.py
|
2 |
from typing import List, Dict, Any
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import numpy as np
|
|
|
15 |
"""Initialize embedding model and load clause references"""
|
16 |
if self.embedding_model is None:
|
17 |
print("🧠 Loading embedding model for clause tagging...")
|
18 |
+
|
19 |
+
# Set cache directory explicitly for HF Spaces
|
20 |
+
cache_folder = "/tmp/sentence_transformers_cache"
|
21 |
+
os.makedirs(cache_folder, exist_ok=True)
|
22 |
+
|
23 |
+
# Use a legal-domain model with explicit cache directory
|
24 |
+
self.embedding_model = SentenceTransformer(
|
25 |
+
'law-ai/InLegalBERT',
|
26 |
+
cache_folder=cache_folder
|
27 |
+
)
|
28 |
print("✅ Embedding model loaded")
|
29 |
|
30 |
# Load clause references
|
|
|
62 |
return clauses
|
63 |
|
64 |
async def tag_clauses(self, chunks: List[str]) -> List[Dict[str, Any]]:
|
65 |
+
"""Tag clauses in document chunks - GENERATES NEW EMBEDDINGS"""
|
66 |
if not self.clause_reference:
|
67 |
return []
|
68 |
|
|
|
84 |
)[0][0]
|
85 |
|
86 |
# Only include matches above threshold
|
87 |
+
if similarity > 0.7:
|
88 |
tagged_clauses.append({
|
89 |
'clause_id': clause['id'],
|
90 |
'clause_type': clause['type'],
|
|
|
97 |
|
98 |
# Sort by similarity score and return top matches
|
99 |
tagged_clauses.sort(key=lambda x: x['similarity_score'], reverse=True)
|
100 |
+
return tagged_clauses[:20]
|
101 |
+
|
102 |
+
async def tag_clauses_with_embeddings(self, chunk_data: List[Dict]) -> List[Dict[str, Any]]:
|
103 |
+
"""Tag clauses using pre-computed embeddings - OPTIMIZED VERSION"""
|
104 |
+
if not self.clause_reference:
|
105 |
+
return []
|
106 |
+
|
107 |
+
print(f"🏷️ Tagging clauses using pre-computed embeddings for {len(chunk_data)} chunks...")
|
108 |
+
|
109 |
+
tagged_clauses = []
|
110 |
+
|
111 |
+
for chunk_idx, chunk_info in enumerate(chunk_data):
|
112 |
+
chunk_embedding = chunk_info["embedding"]
|
113 |
+
|
114 |
+
if chunk_embedding is None:
|
115 |
+
continue
|
116 |
+
|
117 |
+
# Find best matching clauses using pre-computed embedding
|
118 |
+
for clause in self.clause_reference:
|
119 |
+
similarity = cosine_similarity(
|
120 |
+
[chunk_embedding],
|
121 |
+
[clause['embedding']]
|
122 |
+
)[0][0]
|
123 |
+
|
124 |
+
if similarity > 0.7:
|
125 |
+
tagged_clauses.append({
|
126 |
+
'clause_id': clause['id'],
|
127 |
+
'clause_type': clause['type'],
|
128 |
+
'clause_category': clause['category'],
|
129 |
+
'matched_text': chunk_info["text"][:200] + '...' if len(chunk_info["text"]) > 200 else chunk_info["text"],
|
130 |
+
'similarity_score': float(similarity),
|
131 |
+
'chunk_index': chunk_idx,
|
132 |
+
'reference_text': clause['text']
|
133 |
+
})
|
134 |
+
|
135 |
+
tagged_clauses.sort(key=lambda x: x['similarity_score'], reverse=True)
|
136 |
+
return tagged_clauses[:6]
|
137 |
+
|