Update summarizer.py
Browse files- summarizer.py +29 -108
summarizer.py
CHANGED
|
@@ -5,119 +5,37 @@ import os
|
|
| 5 |
|
| 6 |
class DocumentSummarizer:
|
| 7 |
def __init__(self):
|
| 8 |
-
self.
|
| 9 |
-
self.legal_pipeline = None
|
| 10 |
self.tokenizer = None
|
|
|
|
| 11 |
|
| 12 |
async def initialize(self):
|
| 13 |
-
"""Initialize
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
print(" Loading legal summarizer...")
|
| 24 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 25 |
-
try:
|
| 26 |
-
legal_start = time.time()
|
| 27 |
-
self.legal_pipeline = pipeline(
|
| 28 |
-
"summarization",
|
| 29 |
-
model="VincentMuriuki/legal-summarizer",
|
| 30 |
-
token=hf_token
|
| 31 |
-
)
|
| 32 |
-
print(f" Legal model loaded in {time.time() - legal_start:.2f}s")
|
| 33 |
-
except Exception as e:
|
| 34 |
-
print(f"β οΈ Legal model failed, using BART only: {e}")
|
| 35 |
-
self.legal_pipeline = None
|
| 36 |
|
| 37 |
async def batch_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
| 38 |
-
"""
|
| 39 |
-
if self.legal_pipeline:
|
| 40 |
-
return await self.hybrid_summarize(chunks)
|
| 41 |
-
else:
|
| 42 |
-
return await self.bart_only_summarize(chunks)
|
| 43 |
-
|
| 44 |
-
async def hybrid_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
| 45 |
-
"""Two-stage summarization: BART β Legal-specific"""
|
| 46 |
if not chunks:
|
| 47 |
return {"actual_summary": "", "short_summary": ""}
|
| 48 |
|
| 49 |
-
print(f"
|
| 50 |
-
stage1_start = time.time()
|
| 51 |
-
|
| 52 |
-
# Stage 1: Facebook BART for clean, reliable summarization
|
| 53 |
-
initial_summaries = self.bart_pipeline(
|
| 54 |
-
chunks,
|
| 55 |
-
max_length=150, # Slightly longer for more detail
|
| 56 |
-
min_length=30,
|
| 57 |
-
do_sample=False,
|
| 58 |
-
num_beams=2,
|
| 59 |
-
truncation=True
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
initial_summary = " ".join([s["summary_text"] for s in initial_summaries])
|
| 63 |
-
stage1_time = time.time() - stage1_start
|
| 64 |
-
print(f" Stage 1 completed in {stage1_time:.2f}s")
|
| 65 |
-
|
| 66 |
-
# Stage 2: Vincent's legal model for domain refinement
|
| 67 |
-
print(" Stage 2: Legal refinement with specialized model...")
|
| 68 |
-
stage2_start = time.time()
|
| 69 |
-
|
| 70 |
-
# Break the initial summary into smaller chunks if needed
|
| 71 |
-
if len(initial_summary) > 3000:
|
| 72 |
-
# Use simple chunking since we don't have chunker here
|
| 73 |
-
words = initial_summary.split()
|
| 74 |
-
refined_chunks = []
|
| 75 |
-
chunk_size = 800 # words per chunk
|
| 76 |
-
for i in range(0, len(words), chunk_size):
|
| 77 |
-
chunk = " ".join(words[i:i + chunk_size])
|
| 78 |
-
refined_chunks.append(chunk)
|
| 79 |
-
else:
|
| 80 |
-
refined_chunks = [initial_summary]
|
| 81 |
-
|
| 82 |
-
final_summaries = self.legal_pipeline(
|
| 83 |
-
refined_chunks,
|
| 84 |
-
max_length=250,
|
| 85 |
-
min_length=48,
|
| 86 |
-
do_sample=False,
|
| 87 |
-
num_beams=1,
|
| 88 |
-
truncation=True
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
final_summary = " ".join([s["summary_text"] for s in final_summaries])
|
| 92 |
-
stage2_time = time.time() - stage2_start
|
| 93 |
-
print(f" Stage 2 completed in {stage2_time:.2f}s")
|
| 94 |
-
|
| 95 |
-
total_time = stage1_time + stage2_time
|
| 96 |
-
|
| 97 |
-
return {
|
| 98 |
-
"actual_summary": final_summary,
|
| 99 |
-
"short_summary": final_summary,
|
| 100 |
-
"initial_bart_summary": initial_summary, # For comparison
|
| 101 |
-
"processing_method": "hybrid_bart_to_legal",
|
| 102 |
-
"time_taken": f"{total_time:.2f}s",
|
| 103 |
-
"stage1_time": f"{stage1_time:.2f}s",
|
| 104 |
-
"stage2_time": f"{stage2_time:.2f}s"
|
| 105 |
-
}
|
| 106 |
-
|
| 107 |
-
async def bart_only_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
| 108 |
-
"""Fallback to BART-only summarization"""
|
| 109 |
-
if not chunks:
|
| 110 |
-
return {"actual_summary": "", "short_summary": ""}
|
| 111 |
-
|
| 112 |
-
print(f" BART-only summarization ({len(chunks)} chunks)...")
|
| 113 |
start_time = time.time()
|
| 114 |
|
| 115 |
-
|
|
|
|
| 116 |
chunks,
|
| 117 |
-
max_length=
|
| 118 |
-
min_length=
|
| 119 |
-
do_sample=False,
|
| 120 |
-
num_beams=2,
|
| 121 |
truncation=True,
|
| 122 |
)
|
| 123 |
|
|
@@ -127,17 +45,19 @@ class DocumentSummarizer:
|
|
| 127 |
# Create short summary if combined is too long
|
| 128 |
short_summary = combined_summary
|
| 129 |
if len(combined_summary) > 2000:
|
| 130 |
-
|
|
|
|
| 131 |
[combined_summary],
|
| 132 |
-
max_length=
|
| 133 |
-
min_length=
|
| 134 |
do_sample=False,
|
| 135 |
-
num_beams=
|
| 136 |
truncation=True,
|
| 137 |
)
|
| 138 |
short_summary = short_outputs[0]["summary_text"]
|
| 139 |
|
| 140 |
processing_time = time.time() - start_time
|
|
|
|
| 141 |
|
| 142 |
return {
|
| 143 |
"actual_summary": combined_summary,
|
|
@@ -150,12 +70,12 @@ class DocumentSummarizer:
|
|
| 150 |
def summarize_texts_sync(self, texts: List[str], max_length: int, min_length: int) -> Dict[str, Any]:
|
| 151 |
"""Synchronous batch summarization for standalone endpoint"""
|
| 152 |
start_time = time.time()
|
| 153 |
-
outputs = self.
|
| 154 |
texts,
|
| 155 |
max_length=max_length,
|
| 156 |
min_length=min_length,
|
| 157 |
do_sample=False,
|
| 158 |
-
num_beams=
|
| 159 |
truncation=True,
|
| 160 |
)
|
| 161 |
summaries = [output["summary_text"] for output in outputs]
|
|
@@ -165,3 +85,4 @@ class DocumentSummarizer:
|
|
| 165 |
"time_taken": f"{time.time() - start_time:.2f}s"
|
| 166 |
}
|
| 167 |
|
|
|
|
|
|
| 5 |
|
| 6 |
class DocumentSummarizer:
|
| 7 |
def __init__(self):
|
| 8 |
+
self.summarizer = None
|
|
|
|
| 9 |
self.tokenizer = None
|
| 10 |
+
self.model_name = "facebook/bart-large-cnn"
|
| 11 |
|
| 12 |
async def initialize(self):
|
| 13 |
+
"""Initialize BART summarization pipeline only"""
|
| 14 |
+
if self.summarizer is None:
|
| 15 |
+
print(f"π€ Loading BART summarization model: {self.model_name}")
|
| 16 |
+
start_time = time.time()
|
| 17 |
+
|
| 18 |
+
# No HF token needed for public BART model
|
| 19 |
+
self.summarizer = pipeline("summarization", model=self.model_name)
|
| 20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 21 |
+
|
| 22 |
+
print(f"β
BART model loaded in {time.time() - start_time:.2f}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
async def batch_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
| 25 |
+
"""BART-only batch summarization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if not chunks:
|
| 27 |
return {"actual_summary": "", "short_summary": ""}
|
| 28 |
|
| 29 |
+
print(f"π BART summarizing {len(chunks)} chunks...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
start_time = time.time()
|
| 31 |
|
| 32 |
+
# Batch process all chunks at once
|
| 33 |
+
outputs = self.summarizer(
|
| 34 |
chunks,
|
| 35 |
+
max_length=150, # Good detail level
|
| 36 |
+
min_length=30, # Avoid too short summaries
|
| 37 |
+
do_sample=False, # Deterministic output
|
| 38 |
+
num_beams=2, # Better quality than greedy
|
| 39 |
truncation=True,
|
| 40 |
)
|
| 41 |
|
|
|
|
| 45 |
# Create short summary if combined is too long
|
| 46 |
short_summary = combined_summary
|
| 47 |
if len(combined_summary) > 2000:
|
| 48 |
+
print("π Creating short summary...")
|
| 49 |
+
short_outputs = self.summarizer(
|
| 50 |
[combined_summary],
|
| 51 |
+
max_length=128,
|
| 52 |
+
min_length=24,
|
| 53 |
do_sample=False,
|
| 54 |
+
num_beams=2,
|
| 55 |
truncation=True,
|
| 56 |
)
|
| 57 |
short_summary = short_outputs[0]["summary_text"]
|
| 58 |
|
| 59 |
processing_time = time.time() - start_time
|
| 60 |
+
print(f"β
BART summarization completed in {processing_time:.2f}s")
|
| 61 |
|
| 62 |
return {
|
| 63 |
"actual_summary": combined_summary,
|
|
|
|
| 70 |
def summarize_texts_sync(self, texts: List[str], max_length: int, min_length: int) -> Dict[str, Any]:
|
| 71 |
"""Synchronous batch summarization for standalone endpoint"""
|
| 72 |
start_time = time.time()
|
| 73 |
+
outputs = self.summarizer(
|
| 74 |
texts,
|
| 75 |
max_length=max_length,
|
| 76 |
min_length=min_length,
|
| 77 |
do_sample=False,
|
| 78 |
+
num_beams=2,
|
| 79 |
truncation=True,
|
| 80 |
)
|
| 81 |
summaries = [output["summary_text"] for output in outputs]
|
|
|
|
| 85 |
"time_taken": f"{time.time() - start_time:.2f}s"
|
| 86 |
}
|
| 87 |
|
| 88 |
+
|