Update summarizer.py
Browse files- summarizer.py +29 -108
summarizer.py
CHANGED
@@ -5,119 +5,37 @@ import os
|
|
5 |
|
6 |
class DocumentSummarizer:
|
7 |
def __init__(self):
|
8 |
-
self.
|
9 |
-
self.legal_pipeline = None
|
10 |
self.tokenizer = None
|
|
|
11 |
|
12 |
async def initialize(self):
|
13 |
-
"""Initialize
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
print(" Loading legal summarizer...")
|
24 |
-
hf_token = os.getenv("HF_TOKEN")
|
25 |
-
try:
|
26 |
-
legal_start = time.time()
|
27 |
-
self.legal_pipeline = pipeline(
|
28 |
-
"summarization",
|
29 |
-
model="VincentMuriuki/legal-summarizer",
|
30 |
-
token=hf_token
|
31 |
-
)
|
32 |
-
print(f" Legal model loaded in {time.time() - legal_start:.2f}s")
|
33 |
-
except Exception as e:
|
34 |
-
print(f"β οΈ Legal model failed, using BART only: {e}")
|
35 |
-
self.legal_pipeline = None
|
36 |
|
37 |
async def batch_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
38 |
-
"""
|
39 |
-
if self.legal_pipeline:
|
40 |
-
return await self.hybrid_summarize(chunks)
|
41 |
-
else:
|
42 |
-
return await self.bart_only_summarize(chunks)
|
43 |
-
|
44 |
-
async def hybrid_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
45 |
-
"""Two-stage summarization: BART β Legal-specific"""
|
46 |
if not chunks:
|
47 |
return {"actual_summary": "", "short_summary": ""}
|
48 |
|
49 |
-
print(f"
|
50 |
-
stage1_start = time.time()
|
51 |
-
|
52 |
-
# Stage 1: Facebook BART for clean, reliable summarization
|
53 |
-
initial_summaries = self.bart_pipeline(
|
54 |
-
chunks,
|
55 |
-
max_length=150, # Slightly longer for more detail
|
56 |
-
min_length=30,
|
57 |
-
do_sample=False,
|
58 |
-
num_beams=2,
|
59 |
-
truncation=True
|
60 |
-
)
|
61 |
-
|
62 |
-
initial_summary = " ".join([s["summary_text"] for s in initial_summaries])
|
63 |
-
stage1_time = time.time() - stage1_start
|
64 |
-
print(f" Stage 1 completed in {stage1_time:.2f}s")
|
65 |
-
|
66 |
-
# Stage 2: Vincent's legal model for domain refinement
|
67 |
-
print(" Stage 2: Legal refinement with specialized model...")
|
68 |
-
stage2_start = time.time()
|
69 |
-
|
70 |
-
# Break the initial summary into smaller chunks if needed
|
71 |
-
if len(initial_summary) > 3000:
|
72 |
-
# Use simple chunking since we don't have chunker here
|
73 |
-
words = initial_summary.split()
|
74 |
-
refined_chunks = []
|
75 |
-
chunk_size = 800 # words per chunk
|
76 |
-
for i in range(0, len(words), chunk_size):
|
77 |
-
chunk = " ".join(words[i:i + chunk_size])
|
78 |
-
refined_chunks.append(chunk)
|
79 |
-
else:
|
80 |
-
refined_chunks = [initial_summary]
|
81 |
-
|
82 |
-
final_summaries = self.legal_pipeline(
|
83 |
-
refined_chunks,
|
84 |
-
max_length=250,
|
85 |
-
min_length=48,
|
86 |
-
do_sample=False,
|
87 |
-
num_beams=1,
|
88 |
-
truncation=True
|
89 |
-
)
|
90 |
-
|
91 |
-
final_summary = " ".join([s["summary_text"] for s in final_summaries])
|
92 |
-
stage2_time = time.time() - stage2_start
|
93 |
-
print(f" Stage 2 completed in {stage2_time:.2f}s")
|
94 |
-
|
95 |
-
total_time = stage1_time + stage2_time
|
96 |
-
|
97 |
-
return {
|
98 |
-
"actual_summary": final_summary,
|
99 |
-
"short_summary": final_summary,
|
100 |
-
"initial_bart_summary": initial_summary, # For comparison
|
101 |
-
"processing_method": "hybrid_bart_to_legal",
|
102 |
-
"time_taken": f"{total_time:.2f}s",
|
103 |
-
"stage1_time": f"{stage1_time:.2f}s",
|
104 |
-
"stage2_time": f"{stage2_time:.2f}s"
|
105 |
-
}
|
106 |
-
|
107 |
-
async def bart_only_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
108 |
-
"""Fallback to BART-only summarization"""
|
109 |
-
if not chunks:
|
110 |
-
return {"actual_summary": "", "short_summary": ""}
|
111 |
-
|
112 |
-
print(f" BART-only summarization ({len(chunks)} chunks)...")
|
113 |
start_time = time.time()
|
114 |
|
115 |
-
|
|
|
116 |
chunks,
|
117 |
-
max_length=
|
118 |
-
min_length=
|
119 |
-
do_sample=False,
|
120 |
-
num_beams=2,
|
121 |
truncation=True,
|
122 |
)
|
123 |
|
@@ -127,17 +45,19 @@ class DocumentSummarizer:
|
|
127 |
# Create short summary if combined is too long
|
128 |
short_summary = combined_summary
|
129 |
if len(combined_summary) > 2000:
|
130 |
-
|
|
|
131 |
[combined_summary],
|
132 |
-
max_length=
|
133 |
-
min_length=
|
134 |
do_sample=False,
|
135 |
-
num_beams=
|
136 |
truncation=True,
|
137 |
)
|
138 |
short_summary = short_outputs[0]["summary_text"]
|
139 |
|
140 |
processing_time = time.time() - start_time
|
|
|
141 |
|
142 |
return {
|
143 |
"actual_summary": combined_summary,
|
@@ -150,12 +70,12 @@ class DocumentSummarizer:
|
|
150 |
def summarize_texts_sync(self, texts: List[str], max_length: int, min_length: int) -> Dict[str, Any]:
|
151 |
"""Synchronous batch summarization for standalone endpoint"""
|
152 |
start_time = time.time()
|
153 |
-
outputs = self.
|
154 |
texts,
|
155 |
max_length=max_length,
|
156 |
min_length=min_length,
|
157 |
do_sample=False,
|
158 |
-
num_beams=
|
159 |
truncation=True,
|
160 |
)
|
161 |
summaries = [output["summary_text"] for output in outputs]
|
@@ -165,3 +85,4 @@ class DocumentSummarizer:
|
|
165 |
"time_taken": f"{time.time() - start_time:.2f}s"
|
166 |
}
|
167 |
|
|
|
|
5 |
|
6 |
class DocumentSummarizer:
|
7 |
def __init__(self):
|
8 |
+
self.summarizer = None
|
|
|
9 |
self.tokenizer = None
|
10 |
+
self.model_name = "facebook/bart-large-cnn"
|
11 |
|
12 |
async def initialize(self):
|
13 |
+
"""Initialize BART summarization pipeline only"""
|
14 |
+
if self.summarizer is None:
|
15 |
+
print(f"π€ Loading BART summarization model: {self.model_name}")
|
16 |
+
start_time = time.time()
|
17 |
+
|
18 |
+
# No HF token needed for public BART model
|
19 |
+
self.summarizer = pipeline("summarization", model=self.model_name)
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
21 |
+
|
22 |
+
print(f"β
BART model loaded in {time.time() - start_time:.2f}s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
async def batch_summarize(self, chunks: List[str]) -> Dict[str, Any]:
|
25 |
+
"""BART-only batch summarization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
if not chunks:
|
27 |
return {"actual_summary": "", "short_summary": ""}
|
28 |
|
29 |
+
print(f"π BART summarizing {len(chunks)} chunks...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
start_time = time.time()
|
31 |
|
32 |
+
# Batch process all chunks at once
|
33 |
+
outputs = self.summarizer(
|
34 |
chunks,
|
35 |
+
max_length=150, # Good detail level
|
36 |
+
min_length=30, # Avoid too short summaries
|
37 |
+
do_sample=False, # Deterministic output
|
38 |
+
num_beams=2, # Better quality than greedy
|
39 |
truncation=True,
|
40 |
)
|
41 |
|
|
|
45 |
# Create short summary if combined is too long
|
46 |
short_summary = combined_summary
|
47 |
if len(combined_summary) > 2000:
|
48 |
+
print("π Creating short summary...")
|
49 |
+
short_outputs = self.summarizer(
|
50 |
[combined_summary],
|
51 |
+
max_length=128,
|
52 |
+
min_length=24,
|
53 |
do_sample=False,
|
54 |
+
num_beams=2,
|
55 |
truncation=True,
|
56 |
)
|
57 |
short_summary = short_outputs[0]["summary_text"]
|
58 |
|
59 |
processing_time = time.time() - start_time
|
60 |
+
print(f"β
BART summarization completed in {processing_time:.2f}s")
|
61 |
|
62 |
return {
|
63 |
"actual_summary": combined_summary,
|
|
|
70 |
def summarize_texts_sync(self, texts: List[str], max_length: int, min_length: int) -> Dict[str, Any]:
|
71 |
"""Synchronous batch summarization for standalone endpoint"""
|
72 |
start_time = time.time()
|
73 |
+
outputs = self.summarizer(
|
74 |
texts,
|
75 |
max_length=max_length,
|
76 |
min_length=min_length,
|
77 |
do_sample=False,
|
78 |
+
num_beams=2,
|
79 |
truncation=True,
|
80 |
)
|
81 |
summaries = [output["summary_text"] for output in outputs]
|
|
|
85 |
"time_taken": f"{time.time() - start_time:.2f}s"
|
86 |
}
|
87 |
|
88 |
+
|