Create vector_store.py
Browse files- vector_store.py +141 -0
vector_store.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vector_store.py
|
2 |
+
"""
|
3 |
+
Vector store integration for legal document embeddings using InLegalBERT and Pinecone
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import pinecone
|
7 |
+
from langchain.vectorstores import Pinecone as LangchainPinecone
|
8 |
+
from langchain.embeddings.base import Embeddings
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
import numpy as np
|
11 |
+
from typing import List, Dict, Any
|
12 |
+
|
13 |
+
class InLegalBERTEmbeddings(Embeddings):
|
14 |
+
"""Custom LangChain embeddings wrapper for InLegalBERT"""
|
15 |
+
|
16 |
+
def __init__(self, model):
|
17 |
+
self.model = model
|
18 |
+
|
19 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
20 |
+
"""Embed a list of documents"""
|
21 |
+
return self.model.encode(texts).tolist()
|
22 |
+
|
23 |
+
def embed_query(self, text: str) -> List[float]:
|
24 |
+
"""Embed a single query"""
|
25 |
+
return self.model.encode([text])[0].tolist()
|
26 |
+
|
27 |
+
class LegalDocumentVectorStore:
|
28 |
+
"""Manages vector storage for legal documents"""
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
self.index_name = 'legal-documents'
|
32 |
+
self.dimension = 768 # InLegalBERT dimension
|
33 |
+
self._initialized = False
|
34 |
+
self.clause_tagger = None
|
35 |
+
|
36 |
+
def _initialize_pinecone(self):
|
37 |
+
"""Initialize Pinecone connection"""
|
38 |
+
if self._initialized:
|
39 |
+
return
|
40 |
+
|
41 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
42 |
+
PINECONE_ENV = os.getenv('PINECONE_ENV', 'us-west1-gcp')
|
43 |
+
|
44 |
+
if not PINECONE_API_KEY:
|
45 |
+
raise ValueError("PINECONE_API_KEY environment variable not set")
|
46 |
+
|
47 |
+
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
48 |
+
|
49 |
+
# Create index if doesn't exist
|
50 |
+
if self.index_name not in pinecone.list_indexes():
|
51 |
+
pinecone.create_index(
|
52 |
+
name=self.index_name,
|
53 |
+
dimension=self.dimension,
|
54 |
+
metric='cosine'
|
55 |
+
)
|
56 |
+
print(f"β
Created Pinecone index: {self.index_name}")
|
57 |
+
|
58 |
+
self._initialized = True
|
59 |
+
|
60 |
+
def save_document_embeddings(self, document_text: str, document_id: str,
|
61 |
+
analysis_results: Dict[str, Any], clause_tagger) -> bool:
|
62 |
+
"""Save document embeddings using InLegalBERT model"""
|
63 |
+
try:
|
64 |
+
self._initialize_pinecone()
|
65 |
+
|
66 |
+
# Use the clause tagger's InLegalBERT model
|
67 |
+
legal_embeddings = InLegalBERTEmbeddings(clause_tagger.embedding_model)
|
68 |
+
|
69 |
+
# Split document into chunks
|
70 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
71 |
+
chunk_size=1000,
|
72 |
+
chunk_overlap=200,
|
73 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
74 |
+
)
|
75 |
+
|
76 |
+
chunks = text_splitter.split_text(document_text)
|
77 |
+
|
78 |
+
# Prepare metadata with analysis results
|
79 |
+
metadatas = []
|
80 |
+
for i, chunk in enumerate(chunks):
|
81 |
+
metadata = {
|
82 |
+
'document_id': document_id,
|
83 |
+
'chunk_index': i,
|
84 |
+
'total_chunks': len(chunks),
|
85 |
+
'source': 'legal_document',
|
86 |
+
'has_key_clauses': len(analysis_results.get('key_clauses', [])) > 0,
|
87 |
+
'risk_count': len(analysis_results.get('risky_terms', [])),
|
88 |
+
'embedding_model': 'InLegalBERT',
|
89 |
+
'timestamp': str(np.datetime64('now'))
|
90 |
+
}
|
91 |
+
metadatas.append(metadata)
|
92 |
+
|
93 |
+
# Create vector store
|
94 |
+
index = pinecone.Index(self.index_name)
|
95 |
+
vectorstore = LangchainPinecone(
|
96 |
+
index=index,
|
97 |
+
embedding=legal_embeddings,
|
98 |
+
text_key="text"
|
99 |
+
)
|
100 |
+
|
101 |
+
# Add documents to Pinecone
|
102 |
+
vectorstore.add_texts(
|
103 |
+
texts=chunks,
|
104 |
+
metadatas=metadatas,
|
105 |
+
ids=[f"{document_id}_chunk_{i}" for i in range(len(chunks))]
|
106 |
+
)
|
107 |
+
|
108 |
+
print(f"β
Saved {len(chunks)} chunks using InLegalBERT embeddings for document {document_id}")
|
109 |
+
return True
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
print(f"β Error saving to Pinecone: {e}")
|
113 |
+
return False
|
114 |
+
|
115 |
+
def get_retriever(self, clause_tagger, document_id: str = None):
|
116 |
+
"""Get retriever for chat functionality"""
|
117 |
+
try:
|
118 |
+
self._initialize_pinecone()
|
119 |
+
|
120 |
+
legal_embeddings = InLegalBERTEmbeddings(clause_tagger.embedding_model)
|
121 |
+
index = pinecone.Index(self.index_name)
|
122 |
+
|
123 |
+
vectorstore = LangchainPinecone(
|
124 |
+
index=index,
|
125 |
+
embedding=legal_embeddings,
|
126 |
+
text_key="text"
|
127 |
+
)
|
128 |
+
|
129 |
+
# Create retriever with optional document filtering
|
130 |
+
search_kwargs = {'k': 5}
|
131 |
+
if document_id:
|
132 |
+
search_kwargs['filter'] = {'document_id': document_id}
|
133 |
+
|
134 |
+
return vectorstore.as_retriever(search_kwargs=search_kwargs)
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
print(f"β Error creating retriever: {e}")
|
138 |
+
return None
|
139 |
+
|
140 |
+
# Global instance
|
141 |
+
vector_store = LegalDocumentVectorStore()
|