File size: 15,870 Bytes
7c9b59a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Welcome to the start of your adventure in Agentic AI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
" <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
" Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
" Well in that case, you're ready!!\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
" <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### And please do remember to contact me if I can help\n",
"\n",
"And I love to connect: https://www.linkedin.com/in/eddonner/\n",
"\n",
"\n",
"### New to Notebooks like this one? Head over to the guides folder!\n",
"\n",
"Otherwise:\n",
"1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice.\n",
"2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
"3. Enjoy!\n",
"\n",
"After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
"1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
"2. In the Settings search bar, type \"venv\" \n",
"3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
"And then try again."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# First let's do an import\n",
"from dotenv import load_dotenv\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Next it's time to load the API keys into environment variables\n",
"\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key exists and begins sk-proj-\n"
]
}
],
"source": [
"# Check the keys\n",
"\n",
"import os\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# And now - the all important import statement\n",
"# If you get an import error - head over to troubleshooting guide\n",
"\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# And now we'll create an instance of the OpenAI class\n",
"# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
"# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
"\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Create a list of messages in the familiar OpenAI format\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2 + 2 equals 4.\n"
]
}
],
"source": [
"# And now call it! Any problems, head to the troubleshooting guide\n",
"\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"print(response.choices[0].message.content)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# And now - let's ask for a question:\n",
"\n",
"question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
"messages = [{\"role\": \"user\", \"content\": question}]\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"If a train leaves a station traveling at 60 miles per hour and another train leaves a different station 100 miles away traveling toward the first train at 90 miles per hour, how far from the first station will they meet, and how long will it take for them to do so?\n"
]
}
],
"source": [
"# ask it\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"question = response.choices[0].message.content\n",
"\n",
"print(question)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# form a new messages list\n",
"messages = [{\"role\": \"user\", \"content\": question}]\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"To determine when and where the two trains will meet, we can use relative speed and basic distance formulas.\n",
"\n",
"1. **Determine the speeds of the trains:**\n",
" - The first train travels at 60 miles per hour (mph).\n",
" - The second train travels at 90 mph toward the first train.\n",
"\n",
"2. **Calculate the relative speed:**\n",
" Since the two trains are moving toward each other, we can add their speeds to find the relative speed:\n",
" \\[\n",
" \\text{Relative speed} = 60 \\text{ mph} + 90 \\text{ mph} = 150 \\text{ mph}\n",
" \\]\n",
"\n",
"3. **Determine the distance between the two trains:**\n",
" The initial distance between the two stations is 100 miles.\n",
"\n",
"4. **Calculate the time until they meet:**\n",
" We can use the formula \\( \\text{Time} = \\frac{\\text{Distance}}{\\text{Speed}} \\).\n",
" \\[\n",
" \\text{Time} = \\frac{100 \\text{ miles}}{150 \\text{ mph}} = \\frac{2}{3} \\text{ hours}\n",
" \\]\n",
" To convert this to minutes, multiply by 60:\n",
" \\[\n",
" \\frac{2}{3} \\times 60 = 40 \\text{ minutes}\n",
" \\]\n",
"\n",
"5. **Determine how far the first train travels before they meet:**\n",
" We can find the distance traveled by the first train in that time:\n",
" \\[\n",
" \\text{Distance (first train)} = \\text{Speed} \\times \\text{Time} = 60 \\text{ mph} \\times \\frac{2}{3} \\text{ hours} = 40 \\text{ miles}\n",
" \\]\n",
"\n",
"Thus, the two trains will meet **40 miles from the first station** and it will take them **40 minutes** to do so.\n"
]
}
],
"source": [
"# Ask it again\n",
"\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"answer = response.choices[0].message.content\n",
"print(answer)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"To determine when and where the two trains will meet, we can use relative speed and basic distance formulas.\n",
"\n",
"1. **Determine the speeds of the trains:**\n",
" - The first train travels at 60 miles per hour (mph).\n",
" - The second train travels at 90 mph toward the first train.\n",
"\n",
"2. **Calculate the relative speed:**\n",
" Since the two trains are moving toward each other, we can add their speeds to find the relative speed:\n",
" \\[\n",
" \\text{Relative speed} = 60 \\text{ mph} + 90 \\text{ mph} = 150 \\text{ mph}\n",
" \\]\n",
"\n",
"3. **Determine the distance between the two trains:**\n",
" The initial distance between the two stations is 100 miles.\n",
"\n",
"4. **Calculate the time until they meet:**\n",
" We can use the formula \\( \\text{Time} = \\frac{\\text{Distance}}{\\text{Speed}} \\).\n",
" \\[\n",
" \\text{Time} = \\frac{100 \\text{ miles}}{150 \\text{ mph}} = \\frac{2}{3} \\text{ hours}\n",
" \\]\n",
" To convert this to minutes, multiply by 60:\n",
" \\[\n",
" \\frac{2}{3} \\times 60 = 40 \\text{ minutes}\n",
" \\]\n",
"\n",
"5. **Determine how far the first train travels before they meet:**\n",
" We can find the distance traveled by the first train in that time:\n",
" \\[\n",
" \\text{Distance (first train)} = \\text{Speed} \\times \\text{Time} = 60 \\text{ mph} \\times \\frac{2}{3} \\text{ hours} = 40 \\text{ miles}\n",
" \\]\n",
"\n",
"Thus, the two trains will meet **40 miles from the first station** and it will take them **40 minutes** to do so."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import Markdown, display\n",
"\n",
"display(Markdown(answer))\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Congratulations!\n",
"\n",
"That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
"\n",
"Next time things get more interesting..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
" <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
" First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
" Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
" Finally have 3 third LLM call propose the Agentic AI solution.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Healthcare management.\n",
"Supply chain disruptions.\n"
]
},
{
"data": {
"text/markdown": [
"Automated decision-making systems that empower businesses to optimize processes, reduce operational costs, and increase efficiency through advanced machine learning algorithms."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# First create the messages:\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": \"Pick a business area that might be worth exploring for an Agentic AI opportunity. Just answer with the business area, no other text.\"}]\n",
"\n",
"# Then make the first call:\n",
"\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"\n",
"# Then read the business idea:\n",
"\n",
"business_idea = response.choices[0].message.content\n",
"\n",
"print(business_idea)\n",
"\n",
"# And repeat!\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": f\"What is one of the pain points in {business_idea}? Just answer with the pain point, no other text.\"}]\n",
"\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"pain_point = response.choices[0].message.content\n",
"\n",
"print(pain_point)\n",
"\n",
"# And repeat!\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": f\"What is the Agentic AI solution to the pain point you picked, which is {pain_point}? Just answer with the solution, no other text.\"}]\n",
"\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=messages\n",
")\n",
"\n",
"agentic_solution = response.choices[0].message.content\n",
"\n",
"display(Markdown(agentic_solution))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "artelus",
"language": "python",
"name": "artelus"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|