Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Response
|
2 |
from fastapi.responses import FileResponse
|
3 |
from kokoro import KPipeline
|
4 |
-
import soundfile as sf
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import torch
|
@@ -10,33 +111,27 @@ from huggingface_hub import InferenceClient
|
|
10 |
def llm_chat_response(text):
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
client = InferenceClient(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
{
|
20 |
-
"
|
21 |
-
"
|
22 |
-
{
|
23 |
-
"type": "text",
|
24 |
-
"text": "Describe this image in one sentence."
|
25 |
-
}#,
|
26 |
-
# {
|
27 |
-
# "type": "image_url",
|
28 |
-
# "image_url": {
|
29 |
-
# "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
30 |
-
# }
|
31 |
-
# }
|
32 |
-
]
|
33 |
}
|
34 |
-
]
|
|
|
|
|
|
|
|
|
|
|
35 |
max_tokens=500,
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
return response_from_llama.choices[0].message['content']
|
41 |
|
42 |
app = FastAPI()
|
@@ -46,10 +141,9 @@ pipeline = KPipeline(lang_code='a')
|
|
46 |
|
47 |
@app.post("/generate")
|
48 |
async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
|
49 |
-
|
50 |
text_reply = llm_chat_response(text)
|
51 |
|
52 |
-
# Generate audio
|
53 |
generator = pipeline(
|
54 |
text_reply,
|
55 |
voice=voice,
|
@@ -57,43 +151,23 @@ async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0)
|
|
57 |
split_pattern=r'\n+'
|
58 |
)
|
59 |
|
60 |
-
#
|
61 |
-
# for i, (gs, ps, audio) in enumerate(generator):
|
62 |
-
# sf.write(f"output_{i}.wav", audio, 24000)
|
63 |
-
# return FileResponse(
|
64 |
-
# f"output_{i}.wav",
|
65 |
-
# media_type="audio/wav",
|
66 |
-
# filename="output.wav"
|
67 |
-
# )
|
68 |
-
|
69 |
-
# return Response("No audio generated", status_code=400)
|
70 |
-
|
71 |
-
|
72 |
-
# Process only the first segment for demo
|
73 |
for i, (gs, ps, audio) in enumerate(generator):
|
74 |
-
|
75 |
-
# Convert PyTorch tensor to NumPy array
|
76 |
audio_numpy = audio.cpu().numpy()
|
77 |
-
# Convert to 16-bit PCM
|
78 |
-
|
79 |
-
# Ensure the audio is in the range [-1, 1]
|
80 |
audio_numpy = np.clip(audio_numpy, -1, 1)
|
81 |
-
# Convert to 16-bit signed integers
|
82 |
pcm_data = (audio_numpy * 32767).astype(np.int16)
|
83 |
-
|
84 |
-
# Convert to bytes (automatically uses row-major order)
|
85 |
raw_audio = pcm_data.tobytes()
|
86 |
|
87 |
-
# Return PCM data with minimal necessary headers
|
88 |
return Response(
|
89 |
content=raw_audio,
|
90 |
media_type="application/octet-stream",
|
91 |
headers={
|
92 |
-
"Content-Disposition":
|
93 |
"X-Sample-Rate": "24000",
|
94 |
"X-Bits-Per-Sample": "16",
|
95 |
"X-Endianness": "little"
|
96 |
}
|
97 |
)
|
98 |
|
99 |
-
return Response("No audio generated", status_code=400)
|
|
|
1 |
+
# from fastapi import FastAPI, Response
|
2 |
+
# from fastapi.responses import FileResponse
|
3 |
+
# from kokoro import KPipeline
|
4 |
+
# import soundfile as sf
|
5 |
+
# import os
|
6 |
+
# import numpy as np
|
7 |
+
# import torch
|
8 |
+
# from huggingface_hub import InferenceClient
|
9 |
+
|
10 |
+
# def llm_chat_response(text):
|
11 |
+
# HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
+
# client = InferenceClient(
|
13 |
+
# provider="hf-inference",
|
14 |
+
# api_key=HF_TOKEN,)
|
15 |
+
|
16 |
+
# response_from_llama = client.chat.completions.create(
|
17 |
+
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
18 |
+
# messages=[
|
19 |
+
# {
|
20 |
+
# "role": "user",
|
21 |
+
# "content": [
|
22 |
+
# {
|
23 |
+
# "type": "text",
|
24 |
+
# "text": "Describe this image in one sentence."
|
25 |
+
# }#,
|
26 |
+
# # {
|
27 |
+
# # "type": "image_url",
|
28 |
+
# # "image_url": {
|
29 |
+
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
30 |
+
# # }
|
31 |
+
# # }
|
32 |
+
# ]
|
33 |
+
# }
|
34 |
+
# ],
|
35 |
+
# max_tokens=500,
|
36 |
+
# )
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# return response_from_llama.choices[0].message['content']
|
41 |
+
|
42 |
+
# app = FastAPI()
|
43 |
+
|
44 |
+
# # Initialize pipeline once at startup
|
45 |
+
# pipeline = KPipeline(lang_code='a')
|
46 |
+
|
47 |
+
# @app.post("/generate")
|
48 |
+
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
|
49 |
+
|
50 |
+
# text_reply = llm_chat_response(text)
|
51 |
+
|
52 |
+
# # Generate audio
|
53 |
+
# generator = pipeline(
|
54 |
+
# text_reply,
|
55 |
+
# voice=voice,
|
56 |
+
# speed=speed,
|
57 |
+
# split_pattern=r'\n+'
|
58 |
+
# )
|
59 |
+
|
60 |
+
# # # Save first segment only for demo
|
61 |
+
# # for i, (gs, ps, audio) in enumerate(generator):
|
62 |
+
# # sf.write(f"output_{i}.wav", audio, 24000)
|
63 |
+
# # return FileResponse(
|
64 |
+
# # f"output_{i}.wav",
|
65 |
+
# # media_type="audio/wav",
|
66 |
+
# # filename="output.wav"
|
67 |
+
# # )
|
68 |
+
|
69 |
+
# # return Response("No audio generated", status_code=400)
|
70 |
+
|
71 |
+
|
72 |
+
# # Process only the first segment for demo
|
73 |
+
# for i, (gs, ps, audio) in enumerate(generator):
|
74 |
+
|
75 |
+
# # Convert PyTorch tensor to NumPy array
|
76 |
+
# audio_numpy = audio.cpu().numpy()
|
77 |
+
# # Convert to 16-bit PCM
|
78 |
+
|
79 |
+
# # Ensure the audio is in the range [-1, 1]
|
80 |
+
# audio_numpy = np.clip(audio_numpy, -1, 1)
|
81 |
+
# # Convert to 16-bit signed integers
|
82 |
+
# pcm_data = (audio_numpy * 32767).astype(np.int16)
|
83 |
+
|
84 |
+
# # Convert to bytes (automatically uses row-major order)
|
85 |
+
# raw_audio = pcm_data.tobytes()
|
86 |
+
|
87 |
+
# # Return PCM data with minimal necessary headers
|
88 |
+
# return Response(
|
89 |
+
# content=raw_audio,
|
90 |
+
# media_type="application/octet-stream",
|
91 |
+
# headers={
|
92 |
+
# "Content-Disposition": f'attachment; filename="output.pcm"',
|
93 |
+
# "X-Sample-Rate": "24000",
|
94 |
+
# "X-Bits-Per-Sample": "16",
|
95 |
+
# "X-Endianness": "little"
|
96 |
+
# }
|
97 |
+
# )
|
98 |
+
|
99 |
+
# return Response("No audio generated", status_code=400)
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
from fastapi import FastAPI, Response
|
104 |
from fastapi.responses import FileResponse
|
105 |
from kokoro import KPipeline
|
|
|
106 |
import os
|
107 |
import numpy as np
|
108 |
import torch
|
|
|
111 |
def llm_chat_response(text):
|
112 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
113 |
client = InferenceClient(
|
114 |
+
provider="sambanova", # Use the provider that supports conversational image-text tasks.
|
115 |
+
api_key=HF_TOKEN,
|
116 |
+
)
|
117 |
+
|
118 |
+
# Build the message payload; here we append a prompt suffix when no image is involved.
|
119 |
+
messages = [{
|
120 |
+
"role": "user",
|
121 |
+
"content": [
|
122 |
{
|
123 |
+
"type": "text",
|
124 |
+
"text": text + " describe in one line only"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
+
]
|
127 |
+
}]
|
128 |
+
|
129 |
+
response_from_llama = client.chat.completions.create(
|
130 |
+
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
131 |
+
messages=messages,
|
132 |
max_tokens=500,
|
133 |
)
|
134 |
|
|
|
|
|
135 |
return response_from_llama.choices[0].message['content']
|
136 |
|
137 |
app = FastAPI()
|
|
|
141 |
|
142 |
@app.post("/generate")
|
143 |
async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
|
|
|
144 |
text_reply = llm_chat_response(text)
|
145 |
|
146 |
+
# Generate audio using the pipeline
|
147 |
generator = pipeline(
|
148 |
text_reply,
|
149 |
voice=voice,
|
|
|
151 |
split_pattern=r'\n+'
|
152 |
)
|
153 |
|
154 |
+
# Process only the first segment for demonstration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
for i, (gs, ps, audio) in enumerate(generator):
|
156 |
+
# Convert PyTorch tensor to NumPy array and prepare 16-bit PCM data
|
|
|
157 |
audio_numpy = audio.cpu().numpy()
|
|
|
|
|
|
|
158 |
audio_numpy = np.clip(audio_numpy, -1, 1)
|
|
|
159 |
pcm_data = (audio_numpy * 32767).astype(np.int16)
|
|
|
|
|
160 |
raw_audio = pcm_data.tobytes()
|
161 |
|
|
|
162 |
return Response(
|
163 |
content=raw_audio,
|
164 |
media_type="application/octet-stream",
|
165 |
headers={
|
166 |
+
"Content-Disposition": 'attachment; filename="output.pcm"',
|
167 |
"X-Sample-Rate": "24000",
|
168 |
"X-Bits-Per-Sample": "16",
|
169 |
"X-Endianness": "little"
|
170 |
}
|
171 |
)
|
172 |
|
173 |
+
return Response("No audio generated", status_code=400)
|