Spaces:
Sleeping
Sleeping
File size: 6,306 Bytes
c034a74 e3f5ff0 ff704b5 d0ae17f c034a74 6f1334b c034a74 ff704b5 c034a74 908288f c034a74 908288f c034a74 908288f c034a74 908288f c034a74 908288f e3f5ff0 ff704b5 e3f5ff0 c034a74 908288f e3f5ff0 908288f c034a74 e3f5ff0 fce7c66 e3f5ff0 c870bf1 c034a74 d0ae17f c870bf1 c034a74 fce7c66 c870bf1 fce7c66 d0ae17f fce7c66 d0ae17f fce7c66 d0ae17f fce7c66 d0ae17f fce7c66 e3f5ff0 d0ae17f e3f5ff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch
# from huggingface_hub import InferenceClient
# def llm_chat_response(text):
# HF_TOKEN = os.getenv("HF_TOKEN")
# client = InferenceClient(api_key=HF_TOKEN)
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + str('describe in one line only')
# } #,
# # {
# # "type": "image_url",
# # "image_url": {
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# # }
# # }
# ]
# }
# ]
# response_from_llama = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500)
# return response_from_llama.choices[0].message['content']
# app = FastAPI()
# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')
# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
# text_reply = llm_chat_response(text)
# # Generate audio
# generator = pipeline(
# text_reply,
# voice=voice,
# speed=speed,
# split_pattern=r'\n+'
# )
# # # Save first segment only for demo
# # for i, (gs, ps, audio) in enumerate(generator):
# # sf.write(f"output_{i}.wav", audio, 24000)
# # return FileResponse(
# # f"output_{i}.wav",
# # media_type="audio/wav",
# # filename="output.wav"
# # )
# # return Response("No audio generated", status_code=400)
# # Process only the first segment for demo
# for i, (gs, ps, audio) in enumerate(generator):
# # Convert PyTorch tensor to NumPy array
# audio_numpy = audio.cpu().numpy()
# # Convert to 16-bit PCM
# # Ensure the audio is in the range [-1, 1]
# audio_numpy = np.clip(audio_numpy, -1, 1)
# # Convert to 16-bit signed integers
# pcm_data = (audio_numpy * 32767).astype(np.int16)
# # Convert to bytes (automatically uses row-major order)
# raw_audio = pcm_data.tobytes()
# # Return PCM data with minimal necessary headers
# return Response(
# content=raw_audio,
# media_type="application/octet-stream",
# headers={
# "Content-Disposition": f'attachment; filename="output.pcm"',
# "X-Sample-Rate": "24000",
# "X-Bits-Per-Sample": "16",
# "X-Endianness": "little"
# }
# )
# return Response("No audio generated", status_code=400)
from fastapi import FastAPI, Response
from fastapi.responses import FileResponse
from kokoro import KPipeline
import soundfile as sf
import os
import numpy as np
import torch
from huggingface_hub import InferenceClient
from pydantic import BaseModel
import base64
from io import BytesIO
from PIL import Image
class TextImageRequest(BaseModel):
text: str = None
image_base64: str = None
voice: str = "af_heart"
speed: float = 1.0
def llm_chat_response(text, image_base64=None):
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(api_key=HF_TOKEN)
message_content = [
{
"type": "text",
"text": text + str('describe in one line only')
}
]
# If image_base64 is provided, add it to the message content
if image_base64:
# Convert base64 to PIL Image for validation
try:
image_bytes = base64.b64decode(image_base64)
# Validate that it's a proper image
Image.open(BytesIO(image_bytes))
# Add the image to message content
message_content.append({
"type": "image",
"image": {
"data": image_base64
}
})
except Exception as e:
print(f"Error processing image: {e}")
messages = [
{
"role": "user",
"content": message_content
}
]
response_from_llama = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
return response_from_llama.choices[0].message['content']
app = FastAPI()
# Initialize pipeline once at startup
pipeline = KPipeline(lang_code='a')
@app.post("/generate")
async def generate_audio(request: TextImageRequest):
# If no text is provided but image is provided, use default prompt
user_text = request.text
if user_text is None and request.image_base64:
user_text = "Describe what you see in the image"
elif user_text is None:
user_text = ""
# Generate response using text and image if provided
text_reply = llm_chat_response(user_text, request.image_base64)
# Generate audio
generator = pipeline(
text_reply,
voice=request.voice,
speed=request.speed,
split_pattern=r'\n+'
)
# Process only the first segment for demo
for i, (gs, ps, audio) in enumerate(generator):
# Convert PyTorch tensor to NumPy array
audio_numpy = audio.cpu().numpy()
# Convert to 16-bit PCM
# Ensure the audio is in the range [-1, 1]
audio_numpy = np.clip(audio_numpy, -1, 1)
# Convert to 16-bit signed integers
pcm_data = (audio_numpy * 32767).astype(np.int16)
# Convert to bytes (automatically uses row-major order)
raw_audio = pcm_data.tobytes()
# Return PCM data with minimal necessary headers
return Response(
content=raw_audio,
media_type="application/octet-stream",
headers={
"Content-Disposition": f'attachment; filename="output.pcm"',
"X-Sample-Rate": "24000",
"X-Bits-Per-Sample": "16",
"X-Endianness": "little"
}
)
return Response("No audio generated", status_code=400) |