testing-groq / app.py
khurrameycon's picture
image from pdf
0842811 verified
raw
history blame
11.6 kB
# import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
import spaces
import tempfile
import requests
from PyPDF2 import PdfReader
from threading import Thread
from flask import Flask, request, jsonify
import io
import fitz
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
# IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
# IS_SPACE = os.environ.get("SPACE_ID", None) is not None
# Determine the device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
print(f"Low memory mode: {LOW_MEMORY}")
app = Flask(__name__)
# Get Hugging Face token from environment variables
HF_TOKEN = os.environ.get('HF_TOKEN')
# Load the model and processor
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
use_auth_token=HF_TOKEN,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available
)
# Move the model to the appropriate device (GPU if available)
# model.to(device)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
# @spaces.GPU # Use the free GPU provided by Hugging Face Spaces
# def predict(image, text):
# # Prepare the input messages
# messages = [
# {"role": "user", "content": [
# {"type": "image"}, # Specify that an image is provided
# {"type": "text", "text": text} # Add the user-provided text input
# ]}
# ]
# # Create the input text using the processor's chat template
# input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# # Process the inputs and move to the appropriate device
# inputs = processor(image, input_text, return_tensors="pt").to(device)
# # Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=100)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True)
# return response
def extract_image_from_pdf(pdf_url, dpi=75):
"""
Extract first page of PDF as image in memory
Args:
pdf_url (str): URL of PDF
dpi (int): Image resolution
Returns:
PIL.Image: First page as image or None
"""
try:
# Download PDF
response = requests.get(pdf_url, timeout=30)
response.raise_for_status()
# Open PDF from bytes
pdf_document = fitz.open(stream=response.content, filetype="pdf")
# Get first page
first_page = pdf_document[0]
# Render page to pixmap
pix = first_page.get_pixmap(matrix=fitz.Matrix(dpi/72, dpi/72))
# Convert to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
pdf_document.close()
return img
except Exception as e:
print(f"Error extracting first page: {e}")
return None
def predict_image(image_url, text, file_pref):
try:
# Download the image from the URL
# response = requests.get(image_url)
# response.raise_for_status() # Raise an error for invalid responses
# image = Image.open(io.BytesIO(response.content)).convert("RGB")
if file_pref == 'img':
response = requests.get(image_url)
response.raise_for_status() # Raise an error for invalid responses
image = Image.open(io.BytesIO(response.content)).convert("RGB")
else:
image = extract_image_from_pdf(image_url)
messages = [
{"role": "user", "content": [
{"type": "image"}, # Specify that an image is provided
{"type": "text", "text": text} # Add the user-provided text input
]}
]
# Create the input text using the processor's chat template
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process the inputs and move to the appropriate device
inputs = processor(image, input_text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=100)
# Decode the output to return the final response
response = processor.decode(outputs[0], skip_special_tokens=True)
# # Prepare the input messages
# messages = [
# {"role": "user", "content": [
# {"type": "image"}, # Specify that an image is provided
# {"type": "text", "text": text} # Add the user-provided text input
# ]}
# ]
# # Create the input text using the processor's chat template
# input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# # Process the inputs and move to the appropriate device
# inputs = processor(image=image, text=input_text, return_tensors="pt").to("cuda")
# Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=100)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True)
# streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
# generated_text = ""
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# buffer = ""
# for new_text in streamer:
# buffer += new_text
# # generated_text_without_prompt = buffer
# # # time.sleep(0.01)
# # yield buffer
# return buffer
return response
except Exception as e:
raise ValueError(f"Error during prediction: {str(e)}")
def extract_text_from_pdf(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False) as temp_pdf:
temp_pdf.write(response.content)
temp_pdf_path = temp_pdf.name
reader = PdfReader(temp_pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
os.remove(temp_pdf_path)
return text
except Exception as e:
raise ValueError(f"Error extracting text from PDF: {str(e)}")
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
@spaces.GPU
def predict_text(text):
# pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
text_combined = text # + "\n\nExtracted Text from PDF:\n" + pdf_text
# Prepare the input messages
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
# Create the input text using the processor's chat template
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process the inputs and move to the appropriate device
# inputs = processor(image, input_text, return_tensors="pt").to(device)
inputs = processor(text=input_text, return_tensors="pt").to("cuda")
# Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=1024)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# generated_text_without_prompt = buffer
# # time.sleep(0.01)
# yield buffer
return buffer
PROMPT = (
"Extract the following information as per this format:\n"
"'Course Code:'\n"
"'Course Name:'\n"
"'Course Description:'\n"
"'Course Credits:'\n"
"'Course Learning Outcomes:'\n"
"'Delivery Method:'\n"
"'Prerequisite(s):'\n"
"'Co-requisite(s):'\n"
"'Materials:'\n"
"'Topical Outline:'\n"
"Do not add anything else except the required information from this text."
)
PROMPT_SKILLS = (
"Provide skills based on the Lightcast Open Skills Taxonomy in categories as:\n"
"'Primary Skills' (the degree program or certification),\n"
"'Secondary Skills', and\n"
"'Tertiary Skills'."
)
PROMPT_IMAGE = (
"Extract the following information from this image:\n"
"'Student Name'\n"
"'Transfer Institution'\n"
"'Course Code'\n"
"'Course Name'\n"
"'Credits Attempted'\n"
"'Credits Earned'\n"
"'Grade'\n"
"'Quality Points'\n"
"'Semester Code'\n"
"'Semester Dates'\n"
"'Program or Major'\n"
"'Cumulative GPA'\n"
"Only provide the requested information without adding any extra details."
)
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Welcome to the PDF Extraction API. Use the /extract endpoint to extract information."})
@app.route("/favicon.ico")
def favicon():
return "", 204
@app.route("/extract", methods=["POST"])
def extract_info():
data = request.json
if not data or "url" not in data:
return jsonify({"error": "Please provide a PDF URL in the request body."}), 400
pdf_url = data["url"]
try:
pdf_text = extract_text_from_pdf(pdf_url)
prompt = f"{PROMPT}\n\n{pdf_text}"
response = predict_text(prompt)
if data["skills"] == True:
prompt_skills = f"{PROMPT_SKILLS} using this information only -- {response}"
response_skills = predict_text(prompt_skills)
else:
response_skills = ''
if data["img_url"] is not None:
prompt_skills = f"{PROMPT_IMAGE}\n"
img_url = data["img_url"]
file_pref = data["file_pref"]
response_image = predict_image(img_url, prompt_skills, file_pref)
else:
response_image = ''
return jsonify({"extracted_info": response + "\n" + response_skills + "\n" + response_image})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
# # Define the Gradio interface
# interface = gr.Interface(
# fn=predict_text,
# inputs=[
# # gr.Image(type="pil", label="Image Input"), # Image input with label
# gr.Textbox(label="Text Input") # Textbox input with label
# ],
# outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
# title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
# description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
# theme="compact" # Using a compact theme for a cleaner look
# )
# # Launch the interface
# interface.launch(debug=True)