Spaces:
Sleeping
Sleeping
input_text with PDF
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
5 |
from PIL import Image
|
6 |
import spaces
|
|
|
7 |
|
8 |
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
9 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
@@ -54,17 +55,38 @@ processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
|
54 |
# # Decode the output to return the final response
|
55 |
# response = processor.decode(outputs[0], skip_special_tokens=True)
|
56 |
# return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@spaces.GPU
|
58 |
-
def predict_text(text):
|
|
|
|
|
59 |
# Prepare the input messages
|
60 |
-
messages = [{"role": "user", "content": [{"type": "text", "text":
|
61 |
|
62 |
# Create the input text using the processor's chat template
|
63 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
64 |
|
65 |
# Process the inputs and move to the appropriate device
|
66 |
# inputs = processor(image, input_text, return_tensors="pt").to(device)
|
67 |
-
inputs = processor(text=
|
68 |
# Generate a response from the model
|
69 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
70 |
|
|
|
4 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
+
import tempfile
|
8 |
|
9 |
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
10 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
|
|
55 |
# # Decode the output to return the final response
|
56 |
# response = processor.decode(outputs[0], skip_special_tokens=True)
|
57 |
# return response
|
58 |
+
|
59 |
+
def extract_text_from_pdf(pdf_url):
|
60 |
+
try:
|
61 |
+
response = requests.get(pdf_url)
|
62 |
+
response.raise_for_status()
|
63 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_pdf:
|
64 |
+
temp_pdf.write(response.content)
|
65 |
+
temp_pdf_path = temp_pdf.name
|
66 |
+
|
67 |
+
reader = PdfReader(temp_pdf_path)
|
68 |
+
text = ""
|
69 |
+
for page in reader.pages:
|
70 |
+
text += page.extract_text()
|
71 |
+
|
72 |
+
os.remove(temp_pdf_path)
|
73 |
+
return text
|
74 |
+
except Exception as e:
|
75 |
+
raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
|
76 |
+
|
77 |
@spaces.GPU
|
78 |
+
def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'):
|
79 |
+
pdf_text = extract_text_from_pdf(url)
|
80 |
+
text_combined = text + "\n\nExtracted Text from PDF:\n" + pdf_text
|
81 |
# Prepare the input messages
|
82 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
|
83 |
|
84 |
# Create the input text using the processor's chat template
|
85 |
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
86 |
|
87 |
# Process the inputs and move to the appropriate device
|
88 |
# inputs = processor(image, input_text, return_tensors="pt").to(device)
|
89 |
+
inputs = processor(text=input_text, return_tensors="pt").to("cuda")
|
90 |
# Generate a response from the model
|
91 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
92 |
|