Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
5 |
+
from PIL import Image
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
|
9 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
10 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
11 |
+
|
12 |
+
# Determine the device (GPU if available, else CPU)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
15 |
+
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
print(f"Low memory mode: {LOW_MEMORY}")
|
18 |
+
|
19 |
+
# Get Hugging Face token from environment variables
|
20 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
21 |
+
|
22 |
+
# Load the model and processor
|
23 |
+
model_name = "ruslanmv/Llama-3.2-11B-Vision-Instruct"
|
24 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
use_auth_token=HF_TOKEN,
|
27 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
|
28 |
+
device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available
|
29 |
+
)
|
30 |
+
|
31 |
+
# Move the model to the appropriate device (GPU if available)
|
32 |
+
model.to(device)
|
33 |
+
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
34 |
+
|
35 |
+
@spaces.GPU # Use the free GPU provided by Hugging Face Spaces
|
36 |
+
def predict(image, text):
|
37 |
+
# Prepare the input messages
|
38 |
+
messages = [
|
39 |
+
{"role": "user", "content": [
|
40 |
+
{"type": "image"}, # Specify that an image is provided
|
41 |
+
{"type": "text", "text": text} # Add the user-provided text input
|
42 |
+
]}
|
43 |
+
]
|
44 |
+
|
45 |
+
# Create the input text using the processor's chat template
|
46 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
47 |
+
|
48 |
+
# Process the inputs and move to the appropriate device
|
49 |
+
inputs = processor(image, input_text, return_tensors="pt").to(device)
|
50 |
+
|
51 |
+
# Generate a response from the model
|
52 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
53 |
+
|
54 |
+
# Decode the output to return the final response
|
55 |
+
response = processor.decode(outputs[0], skip_special_tokens=True)
|
56 |
+
return response
|
57 |
+
|
58 |
+
# Define the Gradio interface
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=predict,
|
61 |
+
inputs=[
|
62 |
+
gr.Image(type="pil", label="Image Input"), # Image input with label
|
63 |
+
gr.Textbox(label="Text Input") # Textbox input with label
|
64 |
+
],
|
65 |
+
outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
|
66 |
+
title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
|
67 |
+
description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
|
68 |
+
theme="compact" # Using a compact theme for a cleaner look
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the interface
|
72 |
+
interface.launch(debug=True)
|