import gradio as gr import os import torch from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer from PIL import Image import spaces import tempfile import requests from PyPDF2 import PdfReader from threading import Thread # Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" IS_SPACE = os.environ.get("SPACE_ID", None) is not None # Determine the device (GPU if available, else CPU) device = "cuda" if torch.cuda.is_available() else "cpu" LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" print(f"Using device: {device}") print(f"Low memory mode: {LOW_MEMORY}") # Get Hugging Face token from environment variables HF_TOKEN = os.environ.get('HF_TOKEN') # Load the model and processor model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained( model_name, use_auth_token=HF_TOKEN, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available ) # Move the model to the appropriate device (GPU if available) model.to(device) processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN) # @spaces.GPU # Use the free GPU provided by Hugging Face Spaces # def predict(image, text): # # Prepare the input messages # messages = [ # {"role": "user", "content": [ # {"type": "image"}, # Specify that an image is provided # {"type": "text", "text": text} # Add the user-provided text input # ]} # ] # # Create the input text using the processor's chat template # input_text = processor.apply_chat_template(messages, add_generation_prompt=True) # # Process the inputs and move to the appropriate device # inputs = processor(image, input_text, return_tensors="pt").to(device) # # Generate a response from the model # outputs = model.generate(**inputs, max_new_tokens=100) # # Decode the output to return the final response # response = processor.decode(outputs[0], skip_special_tokens=True) # return response def extract_text_from_pdf(pdf_url): try: response = requests.get(pdf_url) response.raise_for_status() with tempfile.NamedTemporaryFile(delete=False) as temp_pdf: temp_pdf.write(response.content) temp_pdf_path = temp_pdf.name reader = PdfReader(temp_pdf_path) text = "" for page in reader.pages: text += page.extract_text() os.remove(temp_pdf_path) return text except Exception as e: raise ValueError(f"Error extracting text from PDF: {str(e)}") # raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}") @spaces.GPU def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'): pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf') text_combined = text + "\n\nExtracted Text from PDF:\n" + pdf_text # Prepare the input messages messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}] # Create the input text using the processor's chat template input_text = processor.apply_chat_template(messages, add_generation_prompt=True) # Process the inputs and move to the appropriate device # inputs = processor(image, input_text, return_tensors="pt").to(device) inputs = processor(text=input_text, return_tensors="pt").to("cuda") # Generate a response from the model # outputs = model.generate(**inputs, max_new_tokens=1024) # # Decode the output to return the final response # response = processor.decode(outputs[0], skip_special_tokens=True, skip_prompt=True) streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # generated_text_without_prompt = buffer # # time.sleep(0.01) # yield buffer return buffer # Define the Gradio interface interface = gr.Interface( fn=predict_text, inputs=[ # gr.Image(type="pil", label="Image Input"), # Image input with label gr.Textbox(label="Text Input") # Textbox input with label ], outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description theme="compact" # Using a compact theme for a cleaner look ) # Launch the interface interface.launch(debug=True)