app.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
5 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
class VQAApp:
|
15 |
+
def __init__(self):
|
16 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
logger.info(f"Using device: {self.device}")
|
18 |
+
|
19 |
+
# Initialize models
|
20 |
+
self.models = {}
|
21 |
+
self.processors = {}
|
22 |
+
self.current_model = "blip2"
|
23 |
+
|
24 |
+
# Load models
|
25 |
+
self.load_models()
|
26 |
+
|
27 |
+
def load_models(self):
|
28 |
+
"""Load all available VQA models"""
|
29 |
+
try:
|
30 |
+
# BLIP-2 (Recommended for best performance)
|
31 |
+
logger.info("Loading BLIP-2 model...")
|
32 |
+
self.processors["blip2"] = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
33 |
+
self.models["blip2"] = Blip2ForConditionalGeneration.from_pretrained(
|
34 |
+
"Salesforce/blip2-opt-2.7b",
|
35 |
+
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
|
36 |
+
).to(self.device)
|
37 |
+
|
38 |
+
# Original BLIP (Faster but less accurate)
|
39 |
+
logger.info("Loading BLIP model...")
|
40 |
+
self.processors["blip"] = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
41 |
+
self.models["blip"] = BlipForQuestionAnswering.from_pretrained(
|
42 |
+
"Salesforce/blip-vqa-base"
|
43 |
+
).to(self.device)
|
44 |
+
|
45 |
+
logger.info("All models loaded successfully!")
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
logger.error(f"Error loading models: {str(e)}")
|
49 |
+
raise e
|
50 |
+
|
51 |
+
def answer_question(self, image, question, model_choice="blip2", max_length=50):
|
52 |
+
"""
|
53 |
+
Answer a question about an image using the selected model
|
54 |
+
|
55 |
+
Args:
|
56 |
+
image: PIL Image or path to image
|
57 |
+
question: String question about the image
|
58 |
+
model_choice: Model to use ("blip2" or "blip")
|
59 |
+
max_length: Maximum length of generated answer
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
String answer to the question
|
63 |
+
"""
|
64 |
+
try:
|
65 |
+
if image is None:
|
66 |
+
return "Please upload an image first."
|
67 |
+
|
68 |
+
if not question.strip():
|
69 |
+
return "Please ask a question about the image."
|
70 |
+
|
71 |
+
# Ensure image is PIL Image
|
72 |
+
if isinstance(image, str):
|
73 |
+
if image.startswith('http'):
|
74 |
+
response = requests.get(image)
|
75 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
76 |
+
else:
|
77 |
+
image = Image.open(image).convert('RGB')
|
78 |
+
elif not isinstance(image, Image.Image):
|
79 |
+
image = Image.fromarray(image).convert('RGB')
|
80 |
+
|
81 |
+
# Get model and processor
|
82 |
+
model = self.models[model_choice]
|
83 |
+
processor = self.processors[model_choice]
|
84 |
+
|
85 |
+
if model_choice == "blip2":
|
86 |
+
# BLIP-2 processing
|
87 |
+
inputs = processor(image, question, return_tensors="pt").to(self.device)
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
generated_ids = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_length=max_length,
|
93 |
+
num_beams=5,
|
94 |
+
temperature=0.7,
|
95 |
+
do_sample=True,
|
96 |
+
top_p=0.9
|
97 |
+
)
|
98 |
+
|
99 |
+
answer = processor.decode(generated_ids[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
else: # blip
|
102 |
+
# Original BLIP processing
|
103 |
+
inputs = processor(image, question, return_tensors="pt").to(self.device)
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
outputs = model.generate(**inputs, max_length=max_length, num_beams=5)
|
107 |
+
|
108 |
+
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
109 |
+
|
110 |
+
return answer.strip()
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
logger.error(f"Error in answer_question: {str(e)}")
|
114 |
+
return f"Error processing question: {str(e)}"
|
115 |
+
|
116 |
+
def batch_qa(self, image, questions_text):
|
117 |
+
"""
|
118 |
+
Answer multiple questions about the same image
|
119 |
+
|
120 |
+
Args:
|
121 |
+
image: PIL Image
|
122 |
+
questions_text: String with questions separated by newlines
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
String with questions and answers
|
126 |
+
"""
|
127 |
+
if not questions_text.strip():
|
128 |
+
return "Please enter questions (one per line)."
|
129 |
+
|
130 |
+
questions = [q.strip() for q in questions_text.split('\n') if q.strip()]
|
131 |
+
results = []
|
132 |
+
|
133 |
+
for i, question in enumerate(questions, 1):
|
134 |
+
answer = self.answer_question(image, question, self.current_model)
|
135 |
+
results.append(f"Q{i}: {question}")
|
136 |
+
results.append(f"A{i}: {answer}")
|
137 |
+
results.append("")
|
138 |
+
|
139 |
+
return "\n".join(results)
|
140 |
+
|
141 |
+
def create_gradio_interface():
|
142 |
+
"""Create the Gradio interface for the VQA app"""
|
143 |
+
|
144 |
+
# Initialize VQA app
|
145 |
+
vqa_app = VQAApp()
|
146 |
+
|
147 |
+
# Sample images for demo
|
148 |
+
sample_images = [
|
149 |
+
"https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
|
150 |
+
"https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png"
|
151 |
+
]
|
152 |
+
|
153 |
+
with gr.Blocks(title="Visual Question Answering App", theme=gr.themes.Soft()) as demo:
|
154 |
+
gr.Markdown("""
|
155 |
+
# 🔍 Visual Question Answering App
|
156 |
+
|
157 |
+
Upload an image and ask questions about its content! This app uses state-of-the-art multimodal models
|
158 |
+
from Hugging Face to understand and answer questions about images.
|
159 |
+
|
160 |
+
**Models available:**
|
161 |
+
- **BLIP-2**: Advanced model with better understanding (recommended)
|
162 |
+
- **BLIP**: Faster model for quick answers
|
163 |
+
""")
|
164 |
+
|
165 |
+
with gr.Tab("Single Question"):
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column(scale=1):
|
168 |
+
image_input = gr.Image(
|
169 |
+
label="Upload Image",
|
170 |
+
type="pil",
|
171 |
+
height=300
|
172 |
+
)
|
173 |
+
|
174 |
+
model_choice = gr.Dropdown(
|
175 |
+
choices=["blip2", "blip"],
|
176 |
+
value="blip2",
|
177 |
+
label="Choose Model",
|
178 |
+
info="BLIP-2 is more accurate but slower"
|
179 |
+
)
|
180 |
+
|
181 |
+
max_length_slider = gr.Slider(
|
182 |
+
minimum=10,
|
183 |
+
maximum=100,
|
184 |
+
value=50,
|
185 |
+
step=5,
|
186 |
+
label="Max Answer Length"
|
187 |
+
)
|
188 |
+
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
question_input = gr.Textbox(
|
191 |
+
label="Ask a question about the image",
|
192 |
+
placeholder="What do you see in this image?",
|
193 |
+
lines=3
|
194 |
+
)
|
195 |
+
|
196 |
+
answer_button = gr.Button("Get Answer", variant="primary", size="lg")
|
197 |
+
|
198 |
+
answer_output = gr.Textbox(
|
199 |
+
label="Answer",
|
200 |
+
lines=5,
|
201 |
+
interactive=False
|
202 |
+
)
|
203 |
+
|
204 |
+
# Example questions
|
205 |
+
gr.Markdown("### Example Questions:")
|
206 |
+
example_questions = [
|
207 |
+
"What objects are in this image?",
|
208 |
+
"What color is the main subject?",
|
209 |
+
"How many people are in the image?",
|
210 |
+
"What is the setting or location?",
|
211 |
+
"What activity is taking place?",
|
212 |
+
"What's the weather like in this image?"
|
213 |
+
]
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
for i, eq in enumerate(example_questions[:3]):
|
217 |
+
gr.Button(eq, size="sm").click(
|
218 |
+
lambda q=eq: q, outputs=question_input
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
for i, eq in enumerate(example_questions[3:]):
|
223 |
+
gr.Button(eq, size="sm").click(
|
224 |
+
lambda q=eq: q, outputs=question_input
|
225 |
+
)
|
226 |
+
|
227 |
+
with gr.Tab("Multiple Questions"):
|
228 |
+
with gr.Row():
|
229 |
+
with gr.Column(scale=1):
|
230 |
+
batch_image_input = gr.Image(
|
231 |
+
label="Upload Image",
|
232 |
+
type="pil",
|
233 |
+
height=300
|
234 |
+
)
|
235 |
+
|
236 |
+
batch_model_choice = gr.Dropdown(
|
237 |
+
choices=["blip2", "blip"],
|
238 |
+
value="blip2",
|
239 |
+
label="Choose Model"
|
240 |
+
)
|
241 |
+
|
242 |
+
with gr.Column(scale=1):
|
243 |
+
batch_questions_input = gr.Textbox(
|
244 |
+
label="Questions (one per line)",
|
245 |
+
placeholder="What do you see?\nHow many objects are there?\nWhat color is dominant?",
|
246 |
+
lines=6
|
247 |
+
)
|
248 |
+
|
249 |
+
batch_button = gr.Button("Answer All Questions", variant="primary")
|
250 |
+
|
251 |
+
batch_output = gr.Textbox(
|
252 |
+
label="Questions & Answers",
|
253 |
+
lines=10,
|
254 |
+
interactive=False
|
255 |
+
)
|
256 |
+
|
257 |
+
with gr.Tab("Sample Images"):
|
258 |
+
gr.Markdown("### Try these sample images:")
|
259 |
+
|
260 |
+
with gr.Row():
|
261 |
+
for img_url in sample_images:
|
262 |
+
with gr.Column():
|
263 |
+
sample_img = gr.Image(value=img_url, label="Sample Image")
|
264 |
+
gr.Button("Use This Image").click(
|
265 |
+
lambda x=img_url: x,
|
266 |
+
outputs=image_input
|
267 |
+
)
|
268 |
+
|
269 |
+
# Event handlers
|
270 |
+
def update_model_choice(choice):
|
271 |
+
vqa_app.current_model = choice
|
272 |
+
return choice
|
273 |
+
|
274 |
+
model_choice.change(update_model_choice, inputs=model_choice)
|
275 |
+
batch_model_choice.change(update_model_choice, inputs=batch_model_choice)
|
276 |
+
|
277 |
+
answer_button.click(
|
278 |
+
vqa_app.answer_question,
|
279 |
+
inputs=[image_input, question_input, model_choice, max_length_slider],
|
280 |
+
outputs=answer_output
|
281 |
+
)
|
282 |
+
|
283 |
+
batch_button.click(
|
284 |
+
vqa_app.batch_qa,
|
285 |
+
inputs=[batch_image_input, batch_questions_input],
|
286 |
+
outputs=batch_output
|
287 |
+
)
|
288 |
+
|
289 |
+
gr.Markdown("""
|
290 |
+
### Tips for better results:
|
291 |
+
- Use clear, specific questions
|
292 |
+
- BLIP-2 works better for complex reasoning
|
293 |
+
- Try different phrasings if you don't get good results
|
294 |
+
- Upload high-quality images for best performance
|
295 |
+
""")
|
296 |
+
|
297 |
+
return demo
|
298 |
+
|
299 |
+
# Alternative standalone functions for direct usage
|
300 |
+
def simple_vqa(image_path, question, model_name="blip2"):
|
301 |
+
vqa = VQAApp()
|
302 |
+
|
303 |
+
if isinstance(image_path, str):
|
304 |
+
image = Image.open(image_path).convert('RGB')
|
305 |
+
else:
|
306 |
+
image = image_path
|
307 |
+
|
308 |
+
return vqa.answer_question(image, question, model_name)
|
309 |
+
|
310 |
+
if __name__ == "__main__":
|
311 |
+
demo = create_gradio_interface()
|
312 |
+
|
313 |
+
demo.launch()
|
314 |
+
|
315 |
+
|