File size: 4,432 Bytes
ab78615
 
 
 
 
 
 
 
 
 
210d38b
ab78615
 
 
 
 
 
210d38b
 
 
 
ab78615
 
 
210d38b
ab78615
210d38b
 
ab78615
 
 
210d38b
 
ab78615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import streamlit as st
import requests
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Set up the Streamlit page
st.title("AI Opportunity Finder for Youth")
st.write("Find Scholarships, Internships, Online Courses, and more!")

# Function to get scholarships data from a mock API
def get_scholarships(location, interests):
    # Example: Using a mock API or replace it with a real API URL
    url = "https://jsonplaceholder.typicode.com/posts"  # Mock API
    response = requests.get(url)
    
    if response.status_code == 200:
        # Convert the response to a list and limit to the first 5 items
        posts = response.json()[:5]
        # Construct scholarships list
        return [{"title": f"Scholarship {i+1}", "description": post['body'], "eligibility": "Any student from any background."} for i, post in enumerate(posts)]
    else:
        return []

# Function to get internships data from a mock API
def get_internships():
    # Example: Using a mock API for Internships (replace with a real API)
    url = "https://jsonplaceholder.typicode.com/posts"  # Mock API for testing
    response = requests.get(url)
    
    if response.status_code == 200:
        # Return a list of mock internships
        return [{"jobtitle": f"Internship {i+1}", "company": "Sample Company", "location": "Remote", "snippet": "Description of the internship."} for i in range(5)]
    else:
        return []

# Function to recommend opportunities based on user input
def recommend_opportunities(user_interests, user_skills, opportunities):
    # Combine user profile into a single string
    user_profile = [f"{user_interests} {user_skills}"]
    
    # Create text data for opportunities based on description & eligibility
    opportunities_text = [f"{opportunity['description']} {opportunity['eligibility']}" for opportunity in opportunities]
    
    # Vectorize the text using TF-IDF
    vectorizer = TfidfVectorizer(stop_words='english')
    tfidf_matrix = vectorizer.fit_transform(opportunities_text + user_profile)
    
    # Compute cosine similarity
    cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1])
    
    # Get the indices of the top 5 recommended opportunities
    recommendations = cosine_sim[0].argsort()[-5:][::-1]
    
    # Return recommended opportunities
    return [opportunities[i] for i in recommendations]

# User input for profile
st.sidebar.header("User Profile")
location = st.sidebar.text_input("Location", "Pakistan")  # Default to 'Pakistan'
skills = st.sidebar.text_input("Skills (e.g., Python, Marketing)")
interests = st.sidebar.text_input("Interests (e.g., Technology, Science)")

# Fetch scholarships based on user input
scholarships = get_scholarships(location, interests)

# Display scholarships if available
if scholarships:
    st.write("Scholarships found:")
    for scholarship in scholarships:
        st.write(f"Title: {scholarship['title']}")
        st.write(f"Description: {scholarship['description']}")
        st.write(f"Eligibility: {scholarship['eligibility']}")
        st.write("---")
else:
    st.write("No scholarships found based on your criteria.")

# Fetch internships based on user input
internships = get_internships()

# Display internships if available
if internships:
    st.write("Internships found:")
    for internship in internships:
        st.write(f"Title: {internship['jobtitle']}")
        st.write(f"Company: {internship['company']}")
        st.write(f"Location: {internship['location']}")
        st.write(f"Snippet: {internship['snippet']}")
        st.write("---")
else:
    st.write("No internships found.")

# AI-based recommendations for opportunities
if st.sidebar.button("Get AI Recommendations"):
    # Combine scholarships and internships for recommendations
    all_opportunities = scholarships + internships
    
    # Get AI recommendations based on user input
    recommended_opportunities = recommend_opportunities(interests, skills, all_opportunities)
    
    # Display recommended opportunities
    st.write("Recommended Opportunities based on your profile:")
    for opportunity in recommended_opportunities:
        st.write(f"Title: {opportunity['title']}")
        st.write(f"Description: {opportunity['description']}")
        st.write(f"Eligibility: {opportunity.get('eligibility', 'Not available')}")
        st.write("---")