Spaces:
Running
Running
import streamlit as st | |
import requests | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import MarianMTModel, MarianTokenizer | |
# Set up the Streamlit page | |
st.title("AI Opportunity Finder for Youth") | |
st.write("Find Scholarships, Internships, Online Courses, and more!") | |
# Language Translation Function | |
def translate_text(text, target_lang='de'): | |
# Use Hugging Face's MarianMT for translation | |
model_name = f'Helsinki-NLP/opus-mt-en-{target_lang}' | |
model = MarianMTModel.from_pretrained(model_name) | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True)) | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Mock function to get data from APIs (replace with actual API calls) | |
def get_scholarships(country, interests): | |
url = f"https://jsonplaceholder.typicode.com/posts" # Mock API (replace with real one) | |
# Simulate API response based on country | |
if country == "USA": | |
return [{"title": f"USA Scholarship {i+1}", "description": f"Description for scholarship {i+1} in USA.", "eligibility": "Any student from USA."} for i in range(5)] | |
elif country == "Germany": | |
return [{"title": f"Germany Scholarship {i+1}", "description": f"Description for scholarship {i+1} in Germany.", "eligibility": "Any student from Germany."} for i in range(5)] | |
else: | |
return [{"title": f"Scholarship {i+1}", "description": f"Description for scholarship {i+1} in {country}.", "eligibility": "Any student from any background."} for i in range(5)] | |
def get_internships(country): | |
url = f"https://jsonplaceholder.typicode.com/posts" # Mock API for testing | |
# Simulate internships data | |
if country == "USA": | |
return [{"jobtitle": f"Internship {i+1}", "company": "USA Company", "location": "USA", "snippet": "Description of internship in USA."} for i in range(5)] | |
elif country == "Germany": | |
return [{"jobtitle": f"Internship {i+1}", "company": "Germany Company", "location": "Germany", "snippet": "Description of internship in Germany."} for i in range(5)] | |
else: | |
return [{"jobtitle": f"Internship {i+1}", "company": "Sample Company", "location": "Remote", "snippet": "Description of internship."} for i in range(5)] | |
def recommend_opportunities(user_interests, user_skills, opportunities): | |
user_profile = [f"{user_interests} {user_skills}"] | |
opportunities_text = [f"{opportunity.get('description', 'No description available')} {opportunity.get('eligibility', 'No eligibility available')}" for opportunity in opportunities] | |
# Vectorize the text using TF-IDF | |
vectorizer = TfidfVectorizer(stop_words='english') | |
tfidf_matrix = vectorizer.fit_transform(opportunities_text + user_profile) | |
# Compute cosine similarity | |
cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]) | |
# Get the top 5 recommendations | |
recommendations = cosine_sim[0].argsort()[-5:][::-1] | |
return [opportunities[i] for i in recommendations] | |
# Form to gather user profile and country selection | |
with st.form(key='user_form'): | |
st.sidebar.header("User Profile") | |
location = st.selectbox("Select your Country", ["USA", "Germany", "UK", "India", "Australia", "Pakistan"]) # You can add more countries here | |
skills = st.text_input("Skills (e.g., Python, Marketing)") | |
interests = st.text_input("Interests (e.g., Technology, Science)") | |
target_language = st.selectbox("Select target language", ['de', 'fr', 'es', 'it', 'pt']) # Available language codes for translation | |
submit_button = st.form_submit_button("Find Opportunities") | |
# Fetch data based on the user input | |
if submit_button: | |
# Fetch scholarships and internships based on the selected country and profile | |
scholarships = get_scholarships(location, interests) | |
internships = get_internships(location) | |
# Display Scholarships | |
if scholarships: | |
st.write("Scholarships found:") | |
for scholarship in scholarships: | |
title = translate_text(scholarship.get('title', 'No title available'), target_language) | |
description = translate_text(scholarship.get('description', 'No description available'), target_language) | |
eligibility = translate_text(scholarship.get('eligibility', 'No eligibility available'), target_language) | |
st.write(f"Title: {title}") | |
st.write(f"Description: {description}") | |
st.write(f"Eligibility: {eligibility}") | |
st.write("---") | |
else: | |
st.write("No scholarships found for the selected country.") | |
# Display Internships | |
if internships: | |
st.write("Internships found:") | |
for internship in internships: | |
title = translate_text(internship.get('jobtitle', 'No title available'), target_language) | |
company = translate_text(internship.get('company', 'No company available'), target_language) | |
location = translate_text(internship.get('location', 'No location available'), target_language) | |
snippet = translate_text(internship.get('snippet', 'No snippet available'), target_language) | |
st.write(f"Title: {title}") | |
st.write(f"Company: {company}") | |
st.write(f"Location: {location}") | |
st.write(f"Snippet: {snippet}") | |
st.write("---") | |
else: | |
st.write("No internships found for the selected country.") | |
# AI Recommendations based on interests and skills | |
all_opportunities = scholarships + internships | |
recommended_opportunities = recommend_opportunities(interests, skills, all_opportunities) | |
st.write("AI-based Recommended Opportunities based on your profile:") | |
for opportunity in recommended_opportunities: | |
title = translate_text(opportunity.get('title', 'No title available'), target_language) | |
description = translate_text(opportunity.get('description', 'No description available'), target_language) | |
eligibility = translate_text(opportunity.get('eligibility', 'Not available'), target_language) | |
st.write(f"Title: {title}") | |
st.write(f"Description: {description}") | |
st.write(f"Eligibility: {eligibility}") | |
st.write("---") | |