AI / app.py
saherPervaiz's picture
Update app.py
8b29264 verified
raw
history blame
4.5 kB
import streamlit as st
import requests
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Set up the Streamlit page
st.title("AI Opportunity Finder for Youth")
st.write("Find Scholarships, Internships, Online Courses, and more!")
# Function to get scholarships data from a mock API
def get_scholarships(country, interests):
# Example: Replace with a real API URL (mocked for demonstration)
url = f"https://jsonplaceholder.typicode.com/posts" # Mock API
response = requests.get(url)
if response.status_code == 200:
posts = response.json()[:5] # Take only the first 5 posts as mock scholarships
return [{"title": f"Scholarship {i+1}", "description": post.get('body', 'No description available'), "eligibility": "Any student from any background."} for i, post in enumerate(posts)]
else:
return []
# Function to get internships data from a mock API
def get_internships(country):
# Example: Replace with a real API URL (mocked for demonstration)
url = f"https://jsonplaceholder.typicode.com/posts" # Mock API for testing
response = requests.get(url)
if response.status_code == 200:
return [{"jobtitle": f"Internship {i+1}", "company": "Sample Company", "location": "Remote", "snippet": "Description of the internship."} for i in range(5)]
else:
return []
# Function to recommend opportunities based on user input
def recommend_opportunities(user_interests, user_skills, opportunities):
user_profile = [f"{user_interests} {user_skills}"]
opportunities_text = [f"{opportunity.get('description', 'No description available')} {opportunity.get('eligibility', 'No eligibility available')}" for opportunity in opportunities]
# Vectorize the text using TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(opportunities_text + user_profile)
# Compute cosine similarity
cosine_sim = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1])
# Get the top 5 recommendations
recommendations = cosine_sim[0].argsort()[-5:][::-1]
return [opportunities[i] for i in recommendations]
# Form to gather user profile and country selection
with st.form(key='user_form'):
st.sidebar.header("User Profile")
location = st.selectbox("Select your Country", ["Pakistan", "USA", "Germany", "India", "UK", "Australia"]) # Add more countries as needed
skills = st.text_input("Skills (e.g., Python, Marketing)")
interests = st.text_input("Interests (e.g., Technology, Science)")
submit_button = st.form_submit_button("Find Opportunities")
# Fetch data based on the user input
if submit_button:
# Fetch scholarships and internships based on the selected country and profile
scholarships = get_scholarships(location, interests)
internships = get_internships(location)
# Display Scholarships
if scholarships:
st.write("Scholarships found:")
for scholarship in scholarships:
st.write(f"Title: {scholarship['title']}")
st.write(f"Description: {scholarship.get('description', 'No description available')}")
st.write(f"Eligibility: {scholarship.get('eligibility', 'No eligibility available')}")
st.write("---")
else:
st.write("No scholarships found for the selected country.")
# Display Internships
if internships:
st.write("Internships found:")
for internship in internships:
st.write(f"Title: {internship['jobtitle']}")
st.write(f"Company: {internship['company']}")
st.write(f"Location: {internship['location']}")
st.write(f"Snippet: {internship['snippet']}")
st.write("---")
else:
st.write("No internships found for the selected country.")
# AI Recommendations based on interests and skills
all_opportunities = scholarships + internships
recommended_opportunities = recommend_opportunities(interests, skills, all_opportunities)
st.write("AI-based Recommended Opportunities based on your profile:")
for opportunity in recommended_opportunities:
st.write(f"Title: {opportunity['title']}")
st.write(f"Description: {opportunity.get('description', 'No description available')}")
st.write(f"Eligibility: {opportunity.get('eligibility', 'Not available')}")
st.write("---")